In recent decades, hypoxic areas have rapidly expanded worldwide in estuaries and coastal zones. The Pearl River Estuary (PRE), one of China's largest estuaries, experiences frequent seasonal hypoxia due to intense human activities and eutrophication. However, the ecological effects of hypoxia in the PRE, particularly on fish communities, remain unclear. To explore these effects, we collected fish community and environmental data in July 2021 during the summer hypoxia development period. The results revealed that bottom-layer dissolved oxygen (DO) in the PRE ranged from 0.08 to 5.71 mg/L, with extensive hypoxic zones (DO ≤ 2 mg/L) observed. Hypoxia has varied effects on fish community composition, distribution, species, and functional diversity in the PRE. A total of 104 fish species were collected in this study, with approximately 30 species (28.6%) exclusively found in hypoxic areas. Species responses to hypoxia varied: species such as , , and were sensitive, while , , and showed higher tolerance. Within the hypoxia area, dissolved oxygen was the main limiting factor for fish community diversity. Functional diversity (FDiv) decreased with higher dissolved oxygen levels, indicating a potential shift in the functional traits and ecological roles of fish species in response to changing oxygen conditions. Further analysis demonstrated that dissolved oxygen had a significantly stronger effect on fish community structure at hypoxic sites than in the whole PRE. Moreover, other environmental variables also had significant effects on the fish community structure and interacted with dissolved oxygen in the hypoxia area. These findings suggest that maintaining sufficient dissolved oxygen levels is essential for sustaining fish communities and ecosystem health in the PRE. This study provides novel insights into the effects of hypoxia on fish communities in estuarine ecosystems and has significant implications for the ecological health and management of the PRE.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11237343 | PMC |
http://dx.doi.org/10.1002/ece3.11722 | DOI Listing |
PLoS One
January 2025
College of Natural and Computational Sciences, Hawai'i Pacific University, Honolulu, HI, United States of America.
Climate change is imposing multiple stressors on marine life, leading to a restructuring of ecological communities as species exhibit differential sensitivities to these stressors. With the ocean warming and wind patterns shifting, processes that drive thermal variations in coastal regions, such as marine heatwaves and upwelling events, can change in frequency, timing, duration, and severity. These changes in environmental parameters can physiologically impact organisms residing in these habitats.
View Article and Find Full Text PDFSci Rep
January 2025
ICAR-Indian Institute of Agricultural Biotechnology, Namkum, Ranchi, 834010, India.
The present study investigates the supplemental effects of chia seed oil (CSO) on the growth performance and modulation of intestinal microbiota in Labeo rohita fingerlings. Four diets were formulated with graded levels of CSO: 1.0%, 2.
View Article and Find Full Text PDFIntegr Environ Assess Manag
January 2025
ExxonMobil Petroleum and Chemical BV, Machelen, Belgium.
Despite the fact that the UN Stockholm Convention on persistent organic pollutants specifically acknowledges that Arctic ecosystems and Indigenous communities are particularly at risk due to biomagnification of contaminants in traditional foods, the bioconcentration factor (BCF) of substances in fish remains the preferred metric for identifying the biomagnification potential of organic substances. The BCF measures uptake of substances from water in water-breathing organisms, but not biomagnification of contaminants from food sources. The purpose of this study is to investigate how the biomagnification factor (BMF) can be used in bioaccumulation assessments.
View Article and Find Full Text PDFCurr Microbiol
January 2025
College of Ocean and Earth Sciences, Xiamen University, Fujian, 361005, China.
The fish intestine is a complex ecosystem where microbial communities are dynamic and influenced by various factors. Preservation conditions during field collection can introduce biases affecting the microbiota amplified during sequencing. Therefore, establishing effective, standardized methods for sampling fish intestinal microbiota is crucial.
View Article and Find Full Text PDFFront Zool
January 2025
Department of General Zoology and Neurobiology, Institute of Biology and Biotechnology, Ruhr-University Bochum, 44801, Bochum, Germany.
Background: During their nighttime shoaling, the flashlight fish Anomalops katoptron produce fascinating, bioluminescent blink patterns, which have been related to the localization of food, determination of nearest neighbor distance, and initiation of the shoal's movement direction. Information transfer e.g.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!