The permeabilization of the BBB to deliver therapeutics with MR-guided FUS redefines therapeutic strategies as it improves patient outcomes. To ensure the best translation towards clinical treatment, the evaluation of hemodynamic modifications in the CNS is necessary to refine treatment parameters. MR-guided FUS was applied at 1.5 MHz with a 50 ms burst every 1 s to open the BBB. CBF, BVf and ADC parameters were monitored with MRI. Cavitation was monitored with a PCD during the FUS sequence and classified with the IUD index into three cavitation levels. We distinctly applied the FUS in the cortex or the striatum. After the BBB permeabilization, neuroinflammation markers were quantified longitudinally. The BBB was successfully opened in all animals in this study and only one animal was classified as "hard" and excluded from the rest of the study. 30 min after FUS-induced BBB opening in the cortex, we measured a 54% drop in CBF and a 13% drop in BVf compared to the contralateral side. After permeabilization of the striatum, a 38% drop in CBF and a 15% drop in BVf were measured. CBF values rapidly returned to baseline, and 90 min after BBB opening, no significant differences were observed. We quantified the subsequent neuroinflammation, noting a significant increase in astrocytic recruitment at 2 days and microglial activation at 1 day after FUS. After 7 days, no more inflammation was visible in the brain. FUS-induced BBB opening transiently modifies hemodynamic parameters such as CBF and BVf, suggesting limited nutrients and oxygen supply to the CNS in the hour following the procedure.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11234282PMC
http://dx.doi.org/10.7150/thno.96721DOI Listing

Publication Analysis

Top Keywords

bbb opening
16
mr-guided fus
8
cbf bvf
8
fus-induced bbb
8
drop cbf
8
drop bvf
8
bbb
7
fus
5
cbf
5
fus-mediated bbb
4

Similar Publications

Characterization of focused ultrasound blood-brain barrier disruption effect on inflammation as a function of treatment parameters.

Biomed Pharmacother

December 2024

Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States. Electronic address:

The technology of focused ultrasound-mediated disruption of the blood-brain barrier (FUS-BBB opening) has now been used in over 20 Phase 1 clinical trials to validate the safety and feasibility of BBB opening for drug delivery in patients with brain tumors and neurodegenerative diseases. The primary treatment parameters, FUS intensity and microbubble dose, are chosen to balance sufficient BBB disruption to achieve drug delivery against potential acute vessel damage leading to microhemorrhage. However, other safety considerations due to second order effects caused by BBB disruption, such as inflammation and alteration of neurovascular function, are only beginning to be understood.

View Article and Find Full Text PDF

A comparative study of experimental and simulated ultrasound beam propagation through cranial bones.

Phys Med Biol

December 2024

Department of Medical Physics and Bioengineering, University College London, Gower Street, London, WC1E 6BT, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND.

Transcranial ultrasound is used in a variety of treatments, including neuromodulation, opening the blood-brain barrier (BBB), and high intensity focused ultrasound (HIFU) therapies. To ensure safety and efficacy of these treatments, numerical simulations of the ultrasound field within the brain are used for treatment planning and evaluation. This study investigates the accuracy of numerical modelling of the propagation of focused ultrasound through cranial bones.

View Article and Find Full Text PDF

Lipid nanoparticles and transcranial focused ultrasound enhance the delivery of SOD1 antisense oligonucleotides to the murine brain for ALS therapy.

J Control Release

December 2024

School of Chemistry and Molecular Bioscience, Molecular Horizons, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia. Electronic address:

Article Synopsis
  • ALS is a severe neurodegenerative disease characterized by the buildup of misfolded proteins in motor neurons, prompting researchers to find ways to reduce this burden for potential treatment.
  • Antisense oligonucleotides (ASOs) have been identified as a promising option to target proteins like SOD1 that cause mutations, but their delivery to the central nervous system is challenging due to the blood-brain barrier.
  • The study demonstrates that using transcranial focused ultrasound (FUS) along with calcium phosphate lipid nanoparticles significantly enhances the delivery of a SOD1 ASO into the brain of mice, leading to reduced SOD1 levels and improved motor neuron survival without damaging brain tissue.
View Article and Find Full Text PDF

Improving treatment for Parkinson's disease: Harnessing photothermal and phagocytosis-driven delivery of levodopa nanocarriers across the blood-brain barrier.

Asian J Pharm Sci

December 2024

State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China.

Parkinson's disease (PD) poses a significant therapeutic challenge, mainly due to the limited ability of drugs to cross the blood-brain barrier (BBB) without undergoing metabolic transformations. Levodopa, a key component of dopamine replacement therapy, effectively enhances dopaminergic activity. However, it encounters obstacles from peripheral decarboxylase, hindering its passage through the BBB.

View Article and Find Full Text PDF

Advancements in ultrasound-mediated drug delivery for central nervous system disorders.

Expert Opin Drug Deliv

December 2024

Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan.

Introduction: Central nervous system (CNS) disorders present major therapeutic challenges due to the presence of the blood - brain barrier (BBB) and disease heterogeneity. The BBB impedes most therapeutic agents, which restricts conventional treatments. Focused ultrasound (FUS) -assisted delivery offers a novel solution by temporarily disrupting the BBB and thereby enhancing drug delivery to the CNS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!