Background: The COVID-19 pandemic has had a significant impact on the management and care of onco-hematological patients, particularly those with lymphoproliferative disorders who are at higher risk for COVID-19 associated bacterial and fungal superinfections.
Case Presentation: We present the successful treatment of a 44-year-old male patient with refractory mantle cell lymphoma treated with chimeric antigen receptor T (CAR-T) cell therapy, despite concurrent COVID-19 infection. The patient developed grade II cytokine release syndrome, requiring admission to the intensive care unit. The CAR-T cells expanded effectively, and the patient achieved complete metabolic remission. During the treatment course, the patient experienced complications including COVID-19-associated pulmonary aspergillosis and a co-infection with and the SARS-CoV-2 omicron variant. Prompt antifungal and antibacterial therapy, along with appropriate COVID-19 treatment, led to the resolution of these infections. Dexamethasone was also administered to reduce inflammation and aid hematologic recovery. Despite the presence of multiple infections, the patient achieved complete remission of lymphoma, highlighting the effectiveness of CAR-T cell therapy in this high-risk patient.
Conclusion: Despite the challenges posed by concurrent infections, the decision to proceed with CAR-T cell therapy in this patient proved to be successful, resulting in complete remission of lymphoma. Early initiation of supportive therapies and the use of dexamethasone contributed to the resolution of complications. This case underscores the importance of individualized decision-making and the potential benefits of CAR-T cell therapy in similar high-risk patients.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11235267 | PMC |
http://dx.doi.org/10.3389/frtra.2023.1238494 | DOI Listing |
J Transl Med
January 2025
Evvivax Biotech, Via Castel Romano 100, 00128, Rome, Italy.
In the past decades, Chimeric Antigen Receptor (CAR)-T cell therapy has achieved remarkable success, leading to the approval of six therapeutic products for haematological malignancies. Recently, the therapeutic potential of this therapy has also been demonstrated in non-tumoral diseases. Currently, the manufacturing process to produce clinical-grade CAR-T cells is complex, time-consuming, and highly expensive.
View Article and Find Full Text PDFBreast cancer will overtake all other cancers in terms of diagnoses in 2024. Breast cancer counts highest among women in terms of cancer incidence and death rates. Innovative treatment approaches are desperately needed because treatment resistance brought on by current clinical drugs impedes therapeutic efficacy.
View Article and Find Full Text PDFTrends Pharmacol Sci
January 2025
Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Parker Institute for Cancer Immunotherapy, University of California, Los Angeles, Los Angeles, CA 90095, USA. Electronic address:
Chimeric antigen receptor (CAR)-T cell therapy has transformed the treatment landscape for hematological cancers. However, achieving comparable success in solid tumors remains challenging. Factors contributing to these limitations include the scarcity of tumor-specific antigens (TSAs), insufficient CAR-T cell infiltration, and the immunosuppressive tumor microenvironment (TME).
View Article and Find Full Text PDFLancet
January 2025
Department of Hematology, Oncology, and Cell Therapy, Otto-von-Guericke University, Magdeburg 39120, Germany. Electronic address:
Biomaterials
December 2024
Institute of Molecular Virology, Ulm University Medical Center, Ulm, 89081, Germany. Electronic address:
Retroviral gene transfer is the preferred method for stable, long-term integration of genetic material into cellular genomes, commonly used to generate chimeric antigen receptor (CAR)-T cells designed to target tumor antigens. However, the efficiency of retroviral gene transfer is often limited by low transduction rates due to low vector titers and electrostatic repulsion between viral particles and cellular membranes. To overcome these limitations, peptide nanofibrils (PNFs) can be applied as transduction enhancers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!