A range of recombinant monoclonal antibodies (rMAbs) have found application in treating diverse diseases, spanning various cancers and immune system disorders. Chinese hamster ovary (CHO) cells have emerged as the predominant choice for producing these rMAbs due to their robustness, ease of transfection, and capacity for posttranslational modifications akin to those in human cells. Transient transfection and/or stable expression could be conducted to express rMAbs in CHO cells. To bolster the yield of rMAbs in CHO cells, a multitude of approaches have been developed, encompassing vector optimization, medium formulation, cultivation parameters, and cell engineering. This review succinctly outlines these methodologies when also addressing challenges encountered in the production process, such as issues with aggregation and fucosylation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11236083 | PMC |
http://dx.doi.org/10.4103/tcmj.tcmj_315_23 | DOI Listing |
J Biol Eng
January 2025
Biochemical Engineering (AVT.BioVT), RWTH Aachen University, Aachen, Germany.
Background: For process development in mammalian cell cultivations, scale-up approaches are essential. A lot of studies concern the scale transfer between different-sized stirred tank reactors. However, process development usually starts in even smaller cultivation vessels like microtiter plates or shake flasks.
View Article and Find Full Text PDFJ Nanobiotechnology
January 2025
Graduate School of Biotechnology, and College of Life Science, Kyung Hee University, Yongin-Si, 17104, Gyeonggi-Do, Republic of Korea.
Background: Nanodrugs play a crucial role in biomedical applications by enhancing drug delivery. To address safety and toxicity concerns associated with nanoparticles, lipid-nanocarrier-based drug delivery systems have emerged as a promising approach for developing next-generation smart nanomedicines. Ginseng has traditionally been used for various therapeutic purposes, including antiviral activity.
View Article and Find Full Text PDFSci Data
January 2025
Department of Molecular Science and Technology, Ajou University, Suwon, 16499, Republic of Korea.
Chinese hamster ovary (CHO) cells play a pivotal role in the production of recombinant therapeutics. In the present study, we conducted a genome-scale pooled CRISPR knockout (KO) screening using a virus-free, recombinase-mediated cassette exchange-based platform in CHO-K1 host and CHO-K1 derived recombinant cells. Genome-wide guide RNA (gRNA) amplicon sequencing data were generated from cell libraries, as well as short- and long-term KO libraries, and validated through phenotypic assessment and gRNA read count distribution.
View Article and Find Full Text PDFJ Cutan Pathol
January 2025
Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
Background: Merkel cell carcinoma (MCC) is a rare, aggressive cutaneous malignancy with neuroendocrine differentiation. Several molecular pathways have been implicated in MCC development and multiple cell-of-origin candidates have been proposed, including neural crest cells, which express acetylcholine receptors (AChRs). The role of nicotinic acetylcholine receptors (nAChRs) in MCC has not been explored.
View Article and Find Full Text PDFACS Appl Bio Mater
January 2025
Department of Internal Medicine, College of Medicine, Seoul National University, Seoul 03080, Korea.
Graphene quantum dots (GQDs) have received much attention for their biomedical applications, such as bioimaging and drug delivery. Additionally, they have antioxidant and anti-inflammatory properties. We used GQDs to treat renal fibrosis and confirmed their ability to protect renal cells from excessive oxidative stress in vitro and in vivo.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!