Simultaneously guiding electromagnetic waves and heat flow at any incidence angle to smoothly bypass some electromagnetic/thermal sensitive elements is a key factor to ensure efficient communication and thermal protection for an on-chip system. In this study, an omnidirectional on-chip electromagnetic-thermal cloak is proposed. Firstly, a holey metallic plate with periodic array of subwavelength apertures is designed by optical surface transformation to realize an omnidirectional electromagnetic cloaking module for on-chip electromagnetic signal. Secondly, a two-layer ring-shaped engineered thermal structure is designed by solving Laplace equation to realize an omnidirectional thermal cloaking module for in-chip heat flow. Finally, these two cloaking modules are combined to achieve cloaking effect for both the electromagnetic waves and thermal fields simultaneously, thus protecting the build-in electromagnetic/thermal sensitive elements without disturbing the external fields. The proposed electromagnetic-thermal cloak may have potential advantage in dealing with omnidirectional electromagnetic compatibility/shielding and multi-directional thermal management/dissipation of an on-chip system.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11237858 | PMC |
http://dx.doi.org/10.1016/j.isci.2024.110105 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!