Sirtuins (SIRTs) are a family of proteins with enzymatic activity. In particular, they are a family of class III NAD-dependent histone deacetylases and ADP-ribosyltransferases. NAD-dependent deac(et)ylase activities catalyzed by sirtuin include ac(et)ylation, propionylation, butyrylation, crotonylation, manylation, and succinylation. Specifically, human SIRT3 is a 399 amino acid protein with two functional domains: a large Rossmann folding motif and NAD binding, and a small complex helix and zinc-binding motif. SIRT3 is widely expressed in mitochondria-rich tissues and is involved in maintaining mitochondrial integrity, homeostasis, and function. Moreover, SIRT3 regulates related diseases, such as aging, hepatic, kidney, neurodegenerative and cardiovascular disease, metabolic diseases, and cancer development. In particular, one of the most significant and damaging post-translational modifications is irreversible protein oxidation, i.e. carbonylation. This process is induced explicitly by increased ROS production due to mitochondrial dysfunction. SIRT3 is carbonylated by 4-hydroxynonenal at the level of Cys. The carbonylation induces conformational changes in the active site, resulting in allosteric inhibition of SIRT3 activity and loss of the ability to deacetylate and regulate antioxidant enzyme activity. Phytochemicals and, in particular, polyphenols, thanks to their strong antioxidant activity, are natural compounds with a positive regulatory action on SIRT3 in various pathologies. Indeed, the enzymatic SIRT3 activity is modulated, for example, by different natural polyphenol classes, including resveratrol and the bergamot polyphenolic fraction. Thus, this review aims to elucidate the mechanisms by which phytochemicals can interact with SIRT3, resulting in post-translational modifications that regulate cellular metabolism.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/10409238.2024.2377094 | DOI Listing |
Front Immunol
January 2025
Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
The innate immune system promptly detects and responds to invading pathogens, with a key role played by the recognition of bacterial-derived DNA through pattern recognition receptors. The Z-DNA binding protein 1 (ZBP1) functions as a DNA sensor inducing type I interferon (IFN) production, innate immune responses and also inflammatory cell death. ZBP1 interacts with cytosolic DNA via its DNA-binding domains, crucial for its activation.
View Article and Find Full Text PDFMol Hortic
January 2025
Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
Peptide hormones are defined as small secreted polypeptide-based intercellular communication signal molecules. Such peptide hormones are encoded by nuclear genes, and often go through proteolytic processing of preproproteins and post-translational modifications. Most peptide hormones are secreted out of the cell to interact with membrane-associated receptors in neighboring cells, and subsequently activate signal transductions, leading to changes in gene expression and cellular responses.
View Article and Find Full Text PDFMol Med
January 2025
School of Public Health, Wenzhou Medical University, Wenzhou, 325035, China.
Hepatocellular carcinoma is one of the most common malignant tumors, and radiotherapy plays a pivotal role in its therapeutic regimen. However, radiotherapy resistance is the main cause of therapeutic failure in patients. Our previous study revealed that Adiponectin Receptor 1 (AdipoR1) is involved in regulating radiation resistance in liver cancer patients treated with stereotactic body radiotherapy.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing 100193, China.
Light serves as an energy source for cell division and expansion during fruit development. Cell expansion significantly influences fruit size and is closely linked to endoreduplication, a unique cell cycle variation characterized by DNA replication without cytokinesis. Paradoxically, under conditions of ample photosynthates, light signaling suppresses cell expansion.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115.
Epstein-Barr virus (EBV) establishes persistent infection, causes infectious mononucleosis, is a major trigger for multiple sclerosis and contributes to multiple cancers. Yet, knowledge remains incomplete about how the virus remodels host B cells to support lytic replication. We previously identified that EBV lytic replication results in selective depletion of plasma membrane (PM) B cell receptor (BCR) complexes, composed of immunoglobulin and the CD79A and CD79B signaling chains.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!