AI Article Synopsis

  • Neuroinflammatory disorders are linked to mitochondrial dysfunction and transcriptional changes, particularly in activated microglia, which shows altered biogenesis and redox status.
  • This study utilized RNA sequencing to examine gene expression in microglia treated with adenosine A receptor modulators, revealing significant upregulation (over 40% of mitochondrial genes expressed differently) in response to treatment, highlighting their role in inflammation and oxidative stress.
  • The research also indicated improved mitochondrial function when using the adenosine A receptor antagonist in pro-inflammatory conditions, supporting the potential of targeting the adenosinergic system for therapeutic interventions in neuroinflammation.

Article Abstract

A hallmark of neuroinflammatory disorders is mitochondrial dysfunction. Nevertheless, the transcriptional changes underlying this alteration are not well-defined. Microglia activation, a decrease in mitochondrion biogenesis and a subsequent alteration of the redox are common factors in diseases coursing with neuroinflammation. In the last two decades, components of the adenosinergic system have been proposed as potential therapeutic targets to combat neuroinflammation. In this research, we analyzed by RNAseq the gene expression in activated microglia treated with an adenosine A receptor antagonist, SCH 582561, and/or an A receptor agonist, 2-Cl-IB-MECA, since these receptors are deeply related to neurodegeneration and inflammation. The analysis was focused on genes related to inflammation and REDOX homeostasis. It was detected that in the three conditions (microglia treated with 2-Cl-IB-MECA, SCH 582561, and their combination) more than 40 % of the detected genes codified by the mitochondrial genome were differentially expressed (FDR < 0.05) (14/34, 16/34, and 13/34) respectively, being almost all of them (>85 %) upregulated in the microglia treated with adenosinergic compounds. Also, we analyzed the differential expression of genes related to mitochondrial function and oxidative stress codified by the nuclear genome. Additionally, we evaluated the oxygen consumption rate (OCR) of mitochondria in microglia treated with LPS and IFN-γ, both alone and in combination with adenosinergic compounds. The data showed an improvement in mitochondrial function with the antagonist of the adenosine A receptor, compared to the effects of pro-inflammatory stimulus, confirming a functional effect consistent with the RNAseq data.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.mito.2024.101934DOI Listing

Publication Analysis

Top Keywords

microglia treated
16
mitochondrial function
12
expression genes
8
activated microglia
8
adenosine receptor
8
sch 582561
8
adenosinergic compounds
8
microglia
6
mitochondrial
5
neuroprotective compounds
4

Similar Publications

Background: Neuroinflammation is one of the essential pathogeneses of cognitive damage suffering from sepsis-associated encephalopathy (SAE). Lots of evidences showed the microglia presented mitochondrial fragmentation during SAE. This study investigated the protective effects and novel mechanisms of inhibiting microglia mitochondrial fragmentation via mitochondrial division inhibitor 1 (Mdivi-1) on cognitive damage in SAE.

View Article and Find Full Text PDF

Background: Alzheimer's disease (AD), the leading cause of dementia, is characterized by cognitive decline and the accumulation of amyloid-β (Aβ). It affects millions, with numbers expected to double by 2050. SMOC2, implicated in inflammation and fibrosis, may play a role in AD pathogenesis, particularly in microglial cell function, offering a potential therapeutic target.

View Article and Find Full Text PDF

Background: Parkinson's disease (PD) is one of the most common neurodegenerative disorders. Previous research has confirmed that isofraxidin can reduce macrophage expression and inhibit peripheral inflammation. However, its effects on the central nervous system remain underexplored.

View Article and Find Full Text PDF

Background: Fabry disease (FD) patients are known to be at high risk of developing neuropsychiatric symptoms such as anxiety, depression and cognitive deficits. Despite this, they are underdiagnosed and inadequately treated. It is unknown whether these symptoms arise from pathological glycosphingolipid deposits or from cerebrovascular abnormalities affecting neuronal functions in the central nervous system.

View Article and Find Full Text PDF

The contemporary understanding that the immune response significantly supports higher brain functions has emphasized the notion that the brain's condition is linked in a complex manner to the state of the immune system. It is therefore not surprising that immunity is a key factor in shaping brain aging. In this perspective article, we propose amending the Latin phrase "mens sana in corpore sano" ("a healthy mind in a healthy body") to "a healthy mind in a healthy immune system.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!