Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Leveraging artificial intelligence (AI) for the analysis of electrocardiograms (ECGs) has the potential to transform diagnosis and estimate the prognosis of not only cardiac but, increasingly, noncardiac conditions. In this review, we summarize clinical studies and AI-enhanced ECG-based clinical applications in the early detection, diagnosis, and estimating prognosis of cardiovascular diseases in the past 5 years (2019-2023). With advancements in deep learning and the rapid increased use of ECG technologies, a large number of clinical studies have been published. However, most of these studies are single-centre, retrospective, proof-of-concept studies that lack external validation. Prospective studies that progress from development toward deployment in clinical settings account for < 15% of the studies. Successful implementations of ECG-based AI applications that have received approval from the Food and Drug Administration have been developed through commercial collaborations, with approximately half of them being for mobile or wearable devices. The field is in its early stages, and overcoming several obstacles is essential, such as prospective validation in multicentre large data sets, addressing technical issues, bias, privacy, data security, model generalizability, and global scalability. This review concludes with a discussion of these challenges and potential solutions. By providing a holistic view of the state of AI in ECG analysis, this review aims to set a foundation for future research directions, emphasizing the need for comprehensive, clinically integrated, and globally deployable AI solutions in cardiovascular disease management.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cjca.2024.07.003 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!