Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Distinguishing high-grade from low-grade chondrosarcoma is extremely vital not only for guiding the development of personalized surgical treatment but also for predicting the prognosis of patients. We aimed to establish and validate a magnetic resonance imaging (MRI)-based nomogram for predicting preoperative grading in patients with chondrosarcoma.
Methods: Approximately 114 patients (60 and 54 cases with high-grade and low-grade chondrosarcoma, respectively) were recruited for this retrospective study. All patients were treated via surgery and histopathologically proven, and they were randomly divided into training (n = 80) and validation (n = 34) sets at a ratio of 7:3. Next, radiomics features were extracted from two sequences using the least absolute shrinkage and selection operator (LASSO) algorithms. The rad-scores were calculated and then subjected to logistic regression to develop a radiomics model. A nomogram combining independent predictive semantic features with radiomic by using multivariate logistic regression was established. The performance of each model was assessed by the receiver operating characteristic (ROC) curve analysis and the area under the curve, while clinical efficacy was evaluated via decision curve analysis (DCA).
Results: Ultimately, six optimal radiomics signatures were extracted from T1-weighted imaging (T1WI) and T2-weighted imaging with fat suppression (T2WI-FS) sequences to develop the radiomics model. Tumour cartilage abundance, which emerged as an independent predictor, was significantly related to chondrosarcoma grading (p < 0.05). The AUC values of the radiomics model were 0.85 (95% CI, 0.76 to 0.95) in the training sets, and the corresponding AUC values in the validation sets were 0.82 (95% CI, 0.65 to 0.98), which were far superior to the clinical model AUC values of 0.68 (95% CI, 0.58 to 0.79) in the training sets and 0.72 (95% CI, 0.57 to 0.87) in the validation sets. The nomogram demonstrated good performance in the preoperative distinction of chondrosarcoma. The DCA analysis revealed that the nomogram model had a markedly higher clinical usefulness in predicting chondrosarcoma grading preoperatively than either the rad-score or clinical model alone.
Conclusion: The nomogram based on MRI radiomics combined with optimal independent factors had better performance for the preoperative differentiation between low-grade and high-grade chondrosarcoma and has potential as a noninvasive preoperative tool for personalizing clinical plans.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11238384 | PMC |
http://dx.doi.org/10.1186/s12880-024-01330-4 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!