Introduction: Alzheimer's disease (AD) is characterized by accumulation of amyloid beta (Aβ) and hyperphosphorylated tau (Tau-P) in the brain. Aβ enhances the activity of kinases involved in the formation of Tau-P. Phosphorylation at Thr 181 determines the propagation of multiple tau phosphorylations. Aβ is derived from the amyloid precursor protein (APP). Cleavage of APP by β-secretase also initiates release of heparan sulfate (HS) from the proteoglycan glypican-1 (GPC1).
Objectives: In this study, we have explored possible connections between GPC1 expression, HS release, APP processing and Tau-P formation in human neural stem cells.
Methods: GPC1 formation was suppressed by using CRISPR/Cas9 and increased by using a vector encoding GPC1. HS release from GPC1 was increased by growing cells in medium containing Arg and ascorbate. Effects were monitored by immunofluorescence microscopy and slot immunoblotting using antibodies/antisera recognizing Aβ, GPC1, HS released from GPC1, total Tau, and Tau phosphorylated at Thr-181, 217 or 231. The latter have been used as blood biomarkers for AD.
Results: Suppression of GPC1 expression resulted in increased phosphorylation at Thr 181 and Thr 217. When GPC1 was overexpressed, phosphorylation at Thr 217 decreased. Stimulation of HS release from GPC1 diminished tau phosphorylation at all of the three Thr positions, while expression of GPC1 was unaffected. Simultaneous stimulation of HS release and APP processing by the cytokine TNF-α also suppressed tau phosphorylation.
Conclusion: The increased release of GPC1-derived HS may interfere with Aβ formation and/or Aβ interaction with tau.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neuroscience.2024.07.005 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!