Preparation empty peptide-receptive MHC class I complex for large-scale detection through photolabile peptide ligands.

Int J Biol Macromol

Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China. Electronic address:

Published: September 2024

Peptide-major histocompatibility complex (pMHC) multimers are wide recognized as the premier technique for detecting, characterizing, and isolating antigen-specific CD8 T-cell subsets. These multimers are specifically useful in studying infections, autoimmune conditions, and cancer through single-cell analysis techniques such as flow cytometry and fluorescence microscopy. However, the development of high-throughput assays with commercially available pMHC tetramers can be expensive, while in-house production may pose challenges for most biology research laboratories. In this context, we introduce a cost-friendly and uncomplicated protocol to prepare empty MHC class I tetramers using disulfide-stabilized molecules and photolabile peptide ligands. Our method relies on disulfide bond-stabilized MHC-I molecules, which demonstrated stability when folded into stable monomers in the presence of a photolabile epitope. These monomers, upon ultraviolet irradiation and streptavidin binding, efficiently assemble into tetramers devoid of any peptide. Following a short incubation with the peptide of interest under gentle conditions, the resulting pMHC tetramer effectively detects patient-sourced, neoantigen-specific T cells. Our unique approach streamlines large-scale pMHC generation, thus paving the way for advancements in T cell-based diagnostics and personalized therapies.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2024.133781DOI Listing

Publication Analysis

Top Keywords

mhc class
8
photolabile peptide
8
peptide ligands
8
preparation empty
4
empty peptide-receptive
4
peptide-receptive mhc
4
class complex
4
complex large-scale
4
large-scale detection
4
detection photolabile
4

Similar Publications

Tumor-specific HLA class I expression is required for cytotoxic T-cell elimination of cancer cells expressing tumor-associated or neo-antigens. Cancers downregulate antigen presentation to avoid adaptive immunity. The highly polymorphic nature of the genes encoding these proteins, coupled with quaternary-structure changes after formalin fixation, complicate detection by immunohistochemistry.

View Article and Find Full Text PDF

Potentiating the effect of immunotherapy in pancreatic cancer using gas-entrapping materials.

Biomaterials

January 2025

Department of Biomedical Engineering, University of Iowa, Iowa City, IA, 52242, USA; Department of Radiation Oncology, University of Iowa, Iowa City, IA, 52242, USA; Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, 52242, USA. Electronic address:

Immune checkpoint inhibitors (ICIs) show limited success in treating pancreatic ductal adenocarcinoma (PDAC), largely due to immune evasion mechanisms, including downregulating expression of major histocompatibility complex class I (MHC-I). Our retrospective analysis demonstrated that smoking - a state of elevated CO exposure - is correlated with increased MHC I expression in pancreatic tumors. Here we tested our hypothesis that introducing exogenous CO augments the anti-cancer effects of immunotherapy.

View Article and Find Full Text PDF

The discovery of tumor-derived neoantigens which elicit an immune response through major histocompatibility complex (MHC-I/II) binding has led to significant advancements in immunotherapy. While many neoantigens have been discovered through the identification of non-synonymous mutations, the rate of these is low in some cancers, including head and neck squamous cell carcinoma. Therefore, the identification of neoantigens through additional means, such as aberrant splicing, is necessary.

View Article and Find Full Text PDF

The global public health risk posed by Salmonella Kentucky (S. Kentucky) is rising, particularly due to the dissemination of antimicrobial resistance genes in human and animal populations. This serovar, widespread in Africa, has emerged as a notable cause of non-typhoidal gastroenteritis in humans.

View Article and Find Full Text PDF

Background: Microsatellite instability-high (MSI-H) metastatic colorectal cancer (CRC) patients are the dominant population in immune checkpoint blockade treatments, while more than half of them could not benefit from single-agent immunotherapy. We tried to identify the biomarker of MSI-H CRC and explore its role and mechanism in anti-PD-1 treatments. Tumor-specific MHC-II was linked to a better response to anti-PD-1 in MSI-H CRC and CD74 promoted assembly and transport of HLA-DR dimers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!