Summary of sulfur hazards in high‑sulfur bauxite and desulfurization methods.

Sci Total Environ

Northeastern University, School of Metallurgy, Key Laboratory of Ecological Metallurgy of Multi-metal Intergrown Ores of Ministry of Education, Liaoning, Shenyang 110819, China.

Published: October 2024

AI Article Synopsis

  • The alumina industry faces challenges due to the depletion of high-grade bauxite, leading to the exploration of high-sulfur bauxite as a viable alternative that requires effective desulfurization methods.
  • The paper reviews both pre-treatment methods (like roasting, flotation, biological, and electrochemical techniques) and post-treatment methods to address the sulfur content in bauxite, which can adversely affect product quality and equipment during processing.
  • It emphasizes the need for developing cost-effective and eco-friendly desulfurization strategies by combining various methods, and discusses the future potential for utilizing high-sulfur bauxite resources.

Article Abstract

With the gradual depletion of high-grade bauxite, the development of the alumina industry has been seriously constrained. High‑sulfur bauxite reserves are abundant and can be used as an effective supplement to bauxite resources. Therefore, the development of desulfurization and comprehensive utilization methods for high sulfur bauxite has been widely studied. Excessive sulfur content in bauxite and complex valence changes in the Bayer process have serious impacts on products and equipment. This paper will introduce pre-treatment desulfurization and post-treatment desulfurization methods such as roasting, flotation, electrochemical and biological methods. Roasting methods use oxidative roasting to convert sulfur to sulfur dioxide-containing flue gas; flotation methods enrich pyrite through flotation chemicals; biological methods use complex chemical reactions of microorganisms to remove sulfur; and electrolysis methods convert sulfur to sulfate through oxidants produced by electrolysis. Post-treatment methods add precipitants such as zinc oxide to treat small amounts of sulfur entering the Bayer process. The reaction mechanism and development of various desulfurization methods are summarized, and the problems of these desulfurization methods are analyzed. The aim is to combine their advantages to develop economical and environmentally friendly desulfurization methods, and propose suggestions for the future resource utilization of high‑sulfur bauxite.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2024.174631DOI Listing

Publication Analysis

Top Keywords

desulfurization methods
20
high‑sulfur bauxite
12
methods
12
development desulfurization
8
bayer process
8
methods roasting
8
biological methods
8
convert sulfur
8
bauxite
7
desulfurization
7

Similar Publications

Evaluating the Appropriateness of Selected Foundry Sands for the Casting of Reactor Housings: A Study Based on Physicochemical Characterization Outcomes.

Materials (Basel)

December 2024

Faculty of Geology, Geophysics and Environmental Protection, AGH University of Krakow, al. A. Mickiewicza 30, 30-059 Krakow, Poland.

In the case of desulfurization and spheroization of cast iron using the in-mold method, in which the treated cast iron is poured into the reaction chamber and placed in the casting mold, the mineral raw material of the mold should support these processes. Therefore, it is important to know the physicochemical properties of the materials selected for the production of casting molds and to learn about the phenomena occurring during their pouring. The research presented in this paper was carried out on quartz, magnesite, chromite, and olivine sands.

View Article and Find Full Text PDF

Mechanochemical destruction of perfluorooctane sulfonate (PFOS) using boron carbide (BC).

J Hazard Mater

December 2024

State Key Joint Laboratory of Environment Simulation and Pollution Control (SKLESP), Beijing, China; Key Laboratory for Emerging Organic Contaminants Control (BKLEOC), Beijing, China; Laboratory for Environmental Frontier Technologies (BLEFT), School of Environment, Tsinghua University, Beijing 100084, China. Electronic address:

Widespread detection in soils and sediments underscores the potential threats posed by persistent, bioaccumulative and toxic perfluorooctane sulfonate (PFOS) to ecosystems and organisms. Nevertheless, the formidable energy of the C-F bond imparts stability and hampers degradation. This study investigates the potential of boron carbide (BC), a hard-ceramic material often utilized in armor and abrasion contexts, for degrading solid-phase PFOS through ball milling.

View Article and Find Full Text PDF

Removal, conversion and utilization technologies of alkali components in bayer red mud.

J Environ Manage

December 2024

China MCC22 Group Corporation Ltd., No.16 Xingfu Road, Fengrun District, Tangshan, Hebei, China.

Bayer red mud is a highly alkaline industrial solid waste generated during alumina production, and its massive discharge and stockpiling poses significant environmental risks. The strong alkalinity of red mud is a primary challenge limiting its effective utilization. This study systematically analyzes the composition and characteristics of alkaline components in red mud, emphasizing the roles of soluble free alkali and chemically bound alkali in regulating its alkalinity.

View Article and Find Full Text PDF

Facile Synthesis of Acyl-Hydrazone Composites Based on Hydrazide-Modified Formylated Polystyrene for Effective Removal of Heavy Metal Ions and Sulfides from Water.

ACS Appl Mater Interfaces

December 2024

Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, China.

In this study, waste polystyrene was modified and upgraded to prepare formylated polystyrene, and the modified polystyrene acetyl hydrazone (LT-HPA) was synthesized by condensation with polymethyl-propionyl-hydrazine. It is proven that the modification of the adsorption material is successful by various characterization methods. In the subsequent pollutant removal study, pH, mass, concentration, contact time, and salt ion interference were investigated.

View Article and Find Full Text PDF

The grouting technique is an efficient method for enhancing the stability of cracked slopes through the use of grouting materials. Conventional cement-based grouting materials are costly, energy-intensive, and environmentally damaging. Additionally, cement-hardening slurry is prone to cracks between the slurry and the rock.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!