Retention forestry as a climate solution: Assessing biomass, soil carbon and albedo impacts in a northern temperate coniferous forest.

Sci Total Environ

School of Earth, Environment & Society, McMaster University, Hamilton, Ontario L8S 4L8, Canada. Electronic address:

Published: October 2024

Forest management pathways for nature-based climate solutions, such as variable retention harvesting (VRH), have been gaining traction in recent years; however, their net biochemical and biophysical impacts remain unknown. Here, we use a combination of close-range and satellite remote sensing, eddy covariance technique, and ground-based biometric measurements to investigate forest thinning density and aggregation that maintain ecosystem nutrients, enhance tree growth and provide a negative feedback to the local climate in a northern temperate coniferous forest stand in Ontario, Canada. Our results showed that soil carbon (C) and nitrogen (N) in VRH plots were significantly lower (p < 0.05) for all VRH treatments compared to unharvested plots. On average, soil C was reduced by -0.64 ± 0.22 Δ% C and N by -0.023 ± 0.008 Δ% N in VRH plots. We also observed the largest loss of soil C and N in open areas of aggregate plots. Furthermore, the changes in albedo resulting from VRH treatment were equivalent to removing a large amount of C from the atmosphere, ranging from 1.3 ± 0.2 kg C yr m in aggregate 33 % crown retention plots to 3.4 ± 0.5 kg C yr m in dispersed 33 % crown retention plots. Our findings indicate that spatially dispersed VRH resulted in minimal loss of soil C and N and the highest understory growth and C uptake, while enhanced tree growth and local cooling through increased albedo were observed in dispersed VRH plots with the fewest residual trees. These findings suggest that using the harvested trees from VRH in a way that avoids releasing C into the atmosphere makes dispersed VRH the preferred forest management pathway for nature-based climate solutions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2024.174680DOI Listing

Publication Analysis

Top Keywords

soil carbon
8
northern temperate
8
temperate coniferous
8
coniferous forest
8
retention forestry
4
forestry climate
4
climate solution
4
solution assessing
4
assessing biomass
4
biomass soil
4

Similar Publications

Unlabelled: Climate and atmospheric deposition interact with watershed properties to drive dissolved organic carbon (DOC) concentrations in lakes. Because drivers of DOC concentration are inter-related and interact, it is challenging to assign a single dominant driver to changes in lake DOC concentration across spatiotemporal scales. Leveraging forty years of data across sixteen lakes, we used structural equation modeling to show that the impact of climate, as moderated by watershed characteristics, has become more dominant in recent decades, superseding the influence of sulfate deposition that was observed in the 1980s.

View Article and Find Full Text PDF

Background: The aim of this study is to investigate the effect of soil water stability on maize (Zea mays L.) yield, water use, and its photosynthetic physiological mechanisms, and to innovate the relationship between maize and soil water, which currently only considers soil water content and neglects soil water stability.

Methods: An organized water experiment was conducted on maize.

View Article and Find Full Text PDF

White root rot disease caused by Rosellinia necatrix is a growing issue in orchards, and biochar pyrolyzed from the pruned branch residues of fruit trees has potential as a soil amendment agent with a number of benefits, such as long-term carbon sequestration. However, the effects of pruned branch biochar on white root rot disease remain unclear. Therefore, we compared direct antagonism against R.

View Article and Find Full Text PDF

Nitrogen-driven shifts in molecular composition of soil dissolved organic matter linked to rare bacterial sub-communities.

Sci Total Environ

December 2024

College of Geographical Science, Fujian Normal University, Fuzhou 350007, China; Fujian Provincial Key Laboratory for Subtropical Resources and Environment, Fujian Normal University, Fuzhou 350007, China.

The interaction between soil dissolved organic matter (DOM) and bacterial communities is critical for understanding key processes in the global carbon cycle. However, the molecular-level associations between these components remain poorly understood. To address this gap, high-resolution Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR MS) was combined with high-throughput sequencing to examine how DOM composition and bacterial sub-community diversity respond to different levels of nitrogen (N) addition (0, 40, and 80 kg N ha yr) and to explore the relationships between them.

View Article and Find Full Text PDF

Soil potentially toxic element (PTE) pollution, especially in karst regions, poses significant ecological risks due to the unique geological features and environmental conditions. This study focuses on the delayed geochemical hazard (DGH) model to assess the progressive risks of cadmium (Cd) and lead (Pb) contamination in the surface soils of karst regions in southwestern China. The study found that Pb and Cd pollution in karst areas presents ecological risks, with the region's high porosity and alkaline soils facilitating the transformation of pollutants from stable to mobile forms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!