Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Stress exerts negative effects on fish health through stimulation of the hypothalamic-pituitary-interrenal axis and autonomic nervous system, resulting in heightened neural and neuroendocrine responses. Energetic investment and physiological adaptation are then required to re-establish homeostatic stability or reach a new allostatic state. The cost of the energetic investment is referred to as allostatic load (AL). While determining the sources of stress and assessing their consequences have resulted in estimates of AL, most of this work has been conducted in adult mammals and humans; no ALs exist for developing fish. From a series of experiments on a model species, zebrafish (Danio rerio), whose yolk-sac larvae were exposed to two chronic stressors (high-temperature and hypoxia), ALs were quantified based on biomarkers of ontogenetic changes in growth, morphometrics, and metabolic activities. Results showed that for zebrafish yolk-sac larvae, chronic stress imposed high AL and, thus, high total allostatic energetic costs, (Rt (AL)), because of prolonged energy demand in the face of limited resources (e.g., yolk). Under severe chronic stress, energetic costs were sufficiently large that energy-limited developing fish may not be able to fully compensate, resulting in maladaptive responses from allostatic overload, leading either to death or to novel allostatic states, possibly more resilient to environmental change.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/icb/icae094 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!