Traditionally, constructing training datasets for automatic muscle segmentation from medical images involved skilled operators, leading to high labor costs and limited scalability. To address this issue, we developed a tool that enables efficient annotation by non-experts and assessed its effectiveness for training an automatic segmentation network. Our system allows users to deform a template three-dimensional (3D) anatomical model to fit a target magnetic-resonance image using free-form deformation with independent control points for axial, sagittal, and coronal directions. This method simplifies the annotation process by allowing non-experts to intuitively adjust the model, enabling simultaneous annotation of all muscles in the template. We evaluated the quality of the tool-assisted segmentation performed by non-experts, which achieved a Dice coefficient greater than 0.75 compared to expert segmentation, without significant errors such as mislabeling adjacent muscles or omitting musculature. An automatic segmentation network trained with datasets created using this tool demonstrated performance comparable to or superior to that of networks trained with expert-generated datasets. This innovative tool significantly reduces the time and labor costs associated with dataset creation for automatic muscle segmentation, potentially revolutionizing medical image annotation and accelerating the development of deep learning-based segmentation networks in various clinical applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11239816 | PMC |
http://dx.doi.org/10.1038/s41598-024-67125-3 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!