The inner ear contains many fissures and canals that can mimic pathology. Photon-counting CT allows greater spatial and contrast resolution of these structures over traditional energy-integrating CT detectors. Small channels containing nerves, arteries, and normal anatomy such as the cochlear cleft and cochlear and vestibular aqueducts are commonly encountered on temporal bone imaging. The improved visualization of these structures poses challenges for radiologists who are new to photon-counting CT. This article updates the existing temporal bone anatomy literature with a detailed anatomic review of the inner ear and major nerves frequently encountered when reviewing temporal bone imaging.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3174/ajnr.A8410 | DOI Listing |
Sci China Life Sci
January 2025
Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
Hair cells in the mammalian cochlea are highly vulnerable to damage from drug toxicity, noise exposure, aging, and genetic mutations, with no capacity for regeneration. Progress in hair cell protection research has been limited by the scarcity of cochlear tissue and suitable in vitro models. Here, we present a novel one-step, self-organizing inner ear organoid system optimized with small molecules, which bypasses the need for multi-step expansion and forced differentiation protocols.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Inha University, Incheon 22332, Republic of Korea.
Gravitational changes have been shown to cause significant abnormalities in various body systems, including the cardiovascular, immune, vestibular, and musculoskeletal systems. While numerous studies have examined the response of the vestibular system to gravitational stimulation, research on functional changes in the peripheral inner ear remains limited. The inner ear comprises two closely related structures: the vestibule and cochlea.
View Article and Find Full Text PDFBiomedicines
December 2024
Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China.
: Alternative splicing is essential for the physiological and pathological development of the inner ear. Disruptions in this process can result in both syndromic and non-syndromic forms of hearing loss. DHX38, a DEAH box RNA helicase, is integral to pre-mRNA splicing regulation and plays critical roles in development, cell differentiation, and stem cell maintenance.
View Article and Find Full Text PDFBMC Genomics
January 2025
Shaanxi Key Laboratory of Qinling Ecological Security, Shaanxi Institute of Zoology, Xi'an, 710032, China.
Background: The relict gull (Larus relictus, Charadriiformes, Laridae) classified as vulnerable in the IUCN Red List is defined as a first-class national protected bird in China. However, our knowledge of the evolutionary history of L. relictus is limited.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Otolaryngology and Head and Neck Surgery, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.
Objective: This multicenter, randomized, double-blind, placebo-controlled, crossover trial aimed to evaluate whether prolonged noisy galvanic vestibular stimulation improves body balance in patients with vestibulopathy.
Materials And Methods: This trial was registered in the Japan Pharmaceutical Information Center Clinical Trials Information registry (jRCT1080224083). Subjects were 20- to 85-year-old patients who had been unsteady for more than one year and whose symptoms had persisted despite more than six months of rehabilitation.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!