Microbiota alert: Proteobacteria consume arginine to dampen omental antitumor immunity.

Cell Host Microbe

Shanghai Institute of Immunology, Department of Immunology and Microbiology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, China. Electronic address:

Published: July 2024

AI Article Synopsis

  • The microbiota has a role in influencing antitumor immunity, but its specific effects on omental antitumor immunity are still not fully understood.
  • A study by Meza-Perez et al. discovered that Proteobacteria utilize arginine, which enhances the suppressive abilities of Treg cells.
  • This increased Treg cell activity inhibits the body's antitumor immune responses and consequently promotes tumor growth in the omentum.

Article Abstract

The microbiota can impact antitumor immunity, but whether the microbiota regulates omental antitumor immunity remains elusive. In this issue of Cell Host & Microbe, Meza-Perez et al. demonstrated that Proteobacteria consume arginine to increase Treg cell suppressive capacity and inhibit antitumor immune responses, promoting tumor growth in the omentum.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chom.2024.05.020DOI Listing

Publication Analysis

Top Keywords

antitumor immunity
12
proteobacteria consume
8
consume arginine
8
omental antitumor
8
immunity microbiota
8
microbiota alert
4
alert proteobacteria
4
arginine dampen
4
dampen omental
4
antitumor
4

Similar Publications

Colorectal cancer (CRC) ranks third globally in cancer incidence and mortality, posing a significant human concern. Recent advancements in immunotherapy are noteworthy. This study explores immune modulation for CRC treatment.

View Article and Find Full Text PDF

The metabolic landscape of cancer greatly influences antitumor immunity, yet it remains unclear how organ-specific metabolites in the tumor microenvironment influence immunosurveillance. We found that accumulation of primary conjugated and secondary bile acids (BAs) are metabolic features of human hepatocellular carcinoma and experimental liver cancer models. Inhibiting conjugated BA synthesis in hepatocytes through deletion of the BA-conjugating enzyme bile acid-CoA:amino acid -acyltransferase (BAAT) enhanced tumor-specific T cell responses, reduced tumor growth, and sensitized tumors to anti-programmed cell death protein 1 (anti-PD-1) immunotherapy.

View Article and Find Full Text PDF

T cell-based therapies, including Tumor Infiltrating Lymphocyte Therapy (TIL), T cell receptor engineered T cells (TCR T), and Chimeric Antigen Receptor T cells (CAR T), are powerful therapeutic approaches for cancer treatment. While these therapies are primarily known for their direct cytotoxic effects on cancer cells, accumulating evidence indicates that they also influence the tumor microenvironment (TME), by altering the cytokine milieu and recruiting additional effector populations to help orchestrate the antitumor immune response. Conversely, the TME itself can modulate the behaviour of these therapies within the host by either supporting or inhibiting their activity.

View Article and Find Full Text PDF

Multi-TACs: Targeting Solid Tumors with Multiple Immune Cell Co-engagers.

ACS Chem Biol

January 2025

Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.

Multiple immune components in the complex and heterogeneous tumor-immune microenvironment (TIME) work cooperatively to promote or impede cancer immunotherapy. Synergistically co-managing multiple immune cells with single agents for advanced antitumor immunity remains desirable but challenging. This In Focus article introduces a triple orthogonal linker (T-Linker)-based multimodal targeting chimera (Multi-TAC) platform, enabling the single-agent-mediated tumor-targeted co-engagement of multiple immune cell types within TIME for potentiated immunotherapy.

View Article and Find Full Text PDF

The effects of T cell differentiation arising from immune checkpoint inhibition targeting cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) and programmed cell death protein 1 (PD-1) on the immunological memory response remain unclear. Our investigation into the effects of anti-CTLA-4 and anti-PD-1 on memory T cell formation in mice reveals that memory T cells generated by anti-CTLA-4 exhibit greater expansion, cytokine production, and antitumor activity than those from anti-PD-1. Notably, anti-CTLA-4 preserves more T cell factor-1 (TCF-1)+ T cells during priming, while anti-PD-1 leads to more thymocyte selection-associated high mobility group box (TOX)+ T cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!