Pd(II) and Cu(III) Complexes of Multiply Fused Pentaphyrin Isomers with Tunable Structures and NIR Absorption.

Inorg Chem

Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry & Molecular Engineering, State Key Laboratory of Bioreactor Engineering, Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education, Laboratory of Pharmaceutical Crystal Engineering & Technology, School of Pharmacy, East China University of Science & Technology, 200237 Shanghai, China.

Published: July 2024

Fused porphyrinoids have received increasing interest in light of their extended conjugation and unique coordination behavior. On the basis of our previously reported multiply fused pentaphyrin isomers and , a novel isomer has been synthesized in this work. possesses a hexacyclic fused moiety with a nearly coplanar CCNN cavity involving an inverted pyrrole, which is slightly different from the CNNN ones of and involving an N-confused pyrrole. - possess cavities with three depronatable protons and thus they all can generate Cu(III) complexes. However, only is stable under ambient conditions. On the other hand, remains intact upon treatment with Pd(II) ions, while and could undergo structural rearrangement to accommodate Pd(II), affording and accompanied by the formation of a lactone ring and the addition of a methoxy group, respectively. Compared with the free bases, the complexes show distinct aromaticity and more intense near-infrared (NIR) absorption up to ca. 1600, 1170, and 1500 nm, respectively. The results indicate that the subtle modification of the linking modes between the pyrrolic units in the fused pentaphyrinoids is effective in modulating the coordination behavior for synthesizing complexes with tunable aromaticity and NIR absorption.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.inorgchem.4c01297DOI Listing

Publication Analysis

Top Keywords

nir absorption
12
cuiii complexes
8
multiply fused
8
fused pentaphyrin
8
pentaphyrin isomers
8
coordination behavior
8
fused
5
pdii cuiii
4
complexes
4
complexes multiply
4

Similar Publications

Targeting the peculiarities of tumor tissue microenvironment different from normal tissue, such as lower pH and overexpression of hydrogen peroxide is the key to effective treatment. In this study, acid-responsive Z-scheme heterojunctions polyglycolated MoS/CoFeO (MoS = molybdenum disulfide, CoFeO = cobalt ferrite) was synthesized using a two-step hydrothermal method, designated as MSCO-PEG, guided by dual modes of photoacoustic imagine (PAI) and nuclear magnetic imaging (MRI). MSCO-PEG (PEG = polyethylene glycol) responded to the acidic environment of tumor tissues and overexpression of hydrogen peroxide to turn on multimodal synergistic treatment of tumor cells under near-infrared-II (NIR-II) illumination.

View Article and Find Full Text PDF

Organic-inorganic hybrid lead halides have been extensively studied due to their outstanding physical properties and diverse compositional elements. However, environmentally benign tin-based hybrids with remarkable flexibility in bandgap engineering have been less investigated. Herein, we report the successful design and synthesis of three tin-based organic-inorganic hybrid compounds through precise molecular modification: [Me(i-Pr)N][SnBr] (), [MeCHCl(i-Pr)N][SnBr] (), and [MeCHBr(i-Pr-Br)N][SnBr] ().

View Article and Find Full Text PDF

An Emerging Toolkit of Ho Sensitized Lanthanide Nanocrystals with NIR-II Excitation and Emission for Bioimaging.

J Am Chem Soc

January 2025

Department of Chemistry, Laboratory of Advanced Materials, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, China.

Optical imaging in the second near-infrared window (NIR-II, 1000-1700 nm) holds great promise for biomedical detection due to reduced tissue scattering and autofluorescence. However, the rational design of NIR-II probes with superior excitation wavelengths to balance the effects of tissue scattering and water absorption remains a great challenge. To address this issue, here we developed a series of Ho-sensitized lanthanide (Ln) nanocrystals (NaYF: Ho, Ln@NaYF) excited at 1143 nm, featuring tunable emissions ranging from 1000 to 2200 nm for bioimaging.

View Article and Find Full Text PDF

Li-Based Nanoprobes with Boosted Photoluminescence for Temperature Visualization in NIR Imaging-Guided Drug Release.

Nano Lett

January 2025

Key Laboratory of Physics and Technology for Advanced Batteries, College of Physics, Jilin University, Changchun 130012, China.

Lanthanide-doped fluoride nanocrystals have emerged as promising tools in biomedicine, yet their applications are still limited by their low luminescence efficiency. Herein, we developed highly efficient lithium-based core-shell-shell (CSS) nanoprobes (NPs) featuring a rhombic active domain and a spherical inert protective shell. By introducing Yb as an energy transfer bridge and optimizing the CSS design, a remarkable 1643-fold enhancement in visible emission and a 33-fold increase in NIR emission are achieved compared to original nanoparticles.

View Article and Find Full Text PDF

The contributed absorber design in graphene addition with the displacement of three materials for resonator design in Aluminum (Al), the middle substrate position with Titanium nitride (TiN), and the ground layer deposition by Iron (Fe) respectively. For the absorption validation highlight, the best four absorption wavelengths (µm) of 0.29, 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!