A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Improved Characterization of Soil Organic Matter by Integrating FT-ICR MS, Liquid Chromatography Tandem Mass Spectrometry, and Molecular Networking: A Case Study of Root Litter Decay under Drought Conditions. | LitMetric

Understanding of how soil organic matter (SOM) chemistry is altered in a changing climate has advanced considerably; however, most SOM components remain unidentified, impeding the ability to characterize a major fraction of organic matter and predict what types of molecules, and from which sources, will persist in soil. We present a novel approach to better characterize SOM extracts by integrating information from three types of analyses, and we deploy this method to characterize decaying root-detritus soil microcosms subjected to either drought or normal conditions. To observe broad differences in composition, we employed direct infusion Fourier-transform ion cyclotron resonance mass spectrometry (DI-FT-ICR MS). We complemented this with liquid chromatography tandem mass spectrometry (LC-MS/MS) to identify components by library matching. Since libraries contain only a small fraction of SOM components, we also used fragment spectral cosine similarity scores to relate unknowns and library matches through molecular networks. This integrated approach allowed us to corroborate DI-FT-ICR MS molecular formulas using library matches, which included fungal metabolites and related polyphenolic compounds. We also inferred structures of unknowns from molecular networks and improved LC-MS/MS annotation rates from ∼5 to 35% by considering DI-FT-ICR MS molecular formula assignments. Under drought conditions, we found greater relative amounts of lignin-like vs condensed aromatic polyphenol formulas and lower average nominal oxidation state of carbon, suggesting reduced decomposition of SOM and/or microbes under stress. Our integrated approach provides a framework for enhanced annotation of SOM components that is more comprehensive than performing individual data analyses in parallel.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.analchem.4c00184DOI Listing

Publication Analysis

Top Keywords

organic matter
12
mass spectrometry
12
som components
12
soil organic
8
liquid chromatography
8
chromatography tandem
8
tandem mass
8
drought conditions
8
library matches
8
molecular networks
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!