Long-range allosteric communication between distant sites and active sites in proteins is central to biological regulation but still poorly characterized, limiting the development of protein engineering and drug design. Addressing this gap, NRIMD is an open-access web server for analyzing long-range interactions in proteins from molecular dynamics (MD) simulations, such as the effect of mutations at distal sites or allosteric ligand binding at allosteric sites on the active center. Based on our recent works on neural relational inference using graph neural networks, this cloud-based web server accepts MD simulation data on any length of residues in the alpha-carbon skeleton format from mainstream MD software. The input trajectory data are validated at the frontend deployed on the cloud and then processed on the backend deployed on a high-performance computer system with a collection of complementary tools. The web server provides a one-stop-shop MD analysis platform to predict long-range interactions and their paths between distant sites and active sites. It provides a user-friendly interface for detailed analysis and visualization. To the best of our knowledge, NRIMD is the first-of-its-kind online service to provide comprehensive long-range interaction analysis on MD simulations, which significantly lowers the barrier of predictions on protein long-range interactions using deep learning. The NRIMD web server is publicly available at https://nrimd.luddy.indianapolis.iu.edu/.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jcim.4c00783 | DOI Listing |
Genomics Proteomics Bioinformatics
January 2025
Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Research Unit of Hematologic Malignancies Genomics and Translational Research of Chinese Academy of Medical Sciences, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
Single-cell RNA sequencing (scRNA-seq) and spatial transcriptomics (ST) techniques hold great value in evaluating the heterogeneity and spatial characteristics of hematopoietic cells within tissues. These two techniques are highly complementary, with scRNA-seq offering single-cell resolution and ST retaining spatial information. However, there is an urgent demand for well-organized and user-friendly toolkits capable of handling single-cell and spatial information.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Physics and Astronomy, Clemson University, Clemson, SC, USA.
The ARID1A gene, frequently mutated in cancer, encodes the AT-rich interactive domain-containing protein 1 A, a key component of the chromatin remodeling SWI/SNF complex. The ARID1A protein features a conserved DNA-binding domain (ARID domain) of approximately 100 residues crucial for its function. Despite the frequency of mutations, the impact on ARID1A's stability and contribution to cancer progression remains unclear.
View Article and Find Full Text PDFActa Crystallogr B Struct Sci Cryst Eng Mater
February 2025
Department of Chemistry, University College London (UCL), 20 Gordon Street, London, WC1H 0AJ, England.
The online software server SARAh-webRepresentational Analysis is introduced. It replaces the previous Windows-versions of SARAh-Representational analysis and SARAh-Refine, and related theory. The new suite of web apps carries out a range representational analysis calculations, including those based on the works of Kovalev, Bertaut, Izyumov, Bradley, Cracknell, Birman and Landau, for magnetic structures and electronic properties within frameworks based on the crystallographic space groups and point groups.
View Article and Find Full Text PDFJ Chem Inf Model
January 2025
Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600036 Tamil Nadu, India.
Interactions between proteins and RNAs are essential for the proper functioning of cells, and mutations in these molecules may lead to diseases. These protein mutations alter the strength of interactions between the protein and RNA, generally described as binding affinity (Δ). Hence, the affinity change upon mutation (ΔΔ) is an important parameter for understanding the effect of mutations in protein-RNA complexes.
View Article and Find Full Text PDFComput Struct Biotechnol J
December 2024
Tunneling Group, Biotechnology Centre, Silesian University of Technology, Bolesława Krzywoustego 8, Gliwice 44-100, Poland.
The biodegradation of synthetic polymers offers a promising solution for sustainable plastic recycling. Polyurethanes (PUR) stand out among these polymers due to their susceptibility to enzymatic hydrolysis. However, the intricate 3D structures formed by PUR chains present challenges for biodegradation studies, both computational and experimental.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!