Detection of Noncovalent Protein-Ligand Complexes by IR-MALDESI-MS.

J Am Soc Mass Spectrom

FTMS Laboratory for Human Health Research, Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States.

Published: August 2024

AI Article Synopsis

  • Native mass spectrometry (MS) is a crucial technique for studying noncovalent interactions between proteins and ligands, but not all MS methods maintain proteins' natural shapes.
  • The demand for quick analysis methods is particularly important in the early phases of drug discovery since most approved and developing drugs interact with targets through these noncovalent interactions.
  • This study outlines a rapid approach using IR-MALDESI-MS, achieving approximately 13-second analysis times for noncovalent protein-ligand complexes, specifically testing known binders with carbonic anhydrase and Bruton's tyrosine kinase.

Article Abstract

Native mass spectrometry (MS) is a powerful analytical technique to directly probe noncovalent protein-protein and protein-ligand interactions. However, not every MS platform can preserve proteins in their native conformation due to high energy deposition from the utilized ionization source. Most small molecules approved as drugs and in development interact with their targets through noncovalent interactions. Therefore, rapid methods to analyze noncovalent protein-ligand interactions are necessary for the early stages of the drug discovery pipeline. Herein, we describe a method for analyzing noncovalent protein-ligand complexes by IR-MALDESI-MS with analysis times of ∼13 s per sample. Carbonic anhydrase and the kinase domain of Bruton's tyrosine kinase are paired with known noncovalent binders to evaluate the effectiveness of native MS by IR-MALDESI.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jasms.4c00199DOI Listing

Publication Analysis

Top Keywords

noncovalent protein-ligand
12
protein-ligand complexes
8
complexes ir-maldesi-ms
8
protein-ligand interactions
8
noncovalent
5
detection noncovalent
4
protein-ligand
4
ir-maldesi-ms native
4
native mass
4
mass spectrometry
4

Similar Publications

The Effective Fragment Potential (EFP) method, a polarizable quantum mechanics-based force field for describing non-covalent interactions, is utilized to calculate protein-ligand interactions in seven inactive cyclin-dependent kinase 2-ligand complexes, employing structural data from molecular dynamics simulations to assess dynamic and solvent effects. Our results reveal high correlations between experimental binding affinities and EFP interaction energies across all the structural data considered. Using representative structures found by clustering analysis and excluding water molecules yields the highest correlation (R2 of 0.

View Article and Find Full Text PDF

Investigation of serotonin-receptor interactions, stability and signal transduction pathways via molecular dynamics simulations.

Biophys Chem

December 2024

Department of Chemistry and Center for Atomic, Molecular, Optical Sciences and Technologies (CAMOST), Indian Institute of Science, Education and Research (IISER) Tirupati, Yerpedu Mandal, Tirupati 517619, India. Electronic address:

Serotonin-receptor binding plays a key role in several neurological and biological processes, including mood, sleep, hunger, cognition, learning, and memory. In this article, we performed molecular dynamics simulation to examine the key residues that play an essential role in the binding of serotonin to the G-protein-coupled 5-HT receptor (5HTR) via electrostatic interactions. Key residues for electrostatic interactions were identified via bond distance analysis and frustration analysis methods.

View Article and Find Full Text PDF

targeting of AmpC beta-lactamases in : unveiling Piperenol B as a potent antimicrobial lead.

J Biomol Struct Dyn

December 2024

Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, Tamilnadu, India.

Article Synopsis
  • Antimicrobial Resistance is a significant global health threat, particularly due to microorganisms like which develop multi-drug resistance through various mechanisms.
  • The study investigates 12,592 phytoconstituents for their potential to inhibit beta-lactamase enzymes, identifying Piperenol B as a top candidate with a strong binding affinity to the AmpC protein.
  • Molecular dynamics simulations confirmed Piperenol B's stability and efficacy as an inhibitor, suggesting it could be a promising alternative treatment against multidrug-resistant bacteria, pending further validation.
View Article and Find Full Text PDF

We introduce the fragment-pairwise Local Energy Decomposition (fp-LED) scheme for precise quantification of individual interactions contributing to the binding energy of arbitrary chemical entities, such as protein-ligand binding energies, lattice energies of molecular crystals, or association energies of large biomolecular assemblies. Using fp-LED, we can assess whether the contribution to the binding energy arising from noncovalent interactions between pairs of molecular fragments in any chemical system is attractive or repulsive, and accurately quantify its magnitude at the coupled cluster level - commonly considered as the "gold standard" of computational chemistry. Such insights are crucial for advancing molecular and material design strategies in fields like catalysis and therapeutic development.

View Article and Find Full Text PDF

Intrinsically disordered proteins are implicated in many human diseases. Small molecules that target the disordered androgen receptor transactivation domain have entered human trials for the treatment of castration-resistant prostate cancer. These molecules have been shown to react with cysteine residues of the androgen receptor transactivation domain and form covalent adducts under physiological conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!