The laboratory-scale (in-vitro) microbial fermentation based on screening of process parameters (factors) and statistical validation of parameters (responses) using regression analysis. The recent trends have shifted from full factorial design towards more complex response surface methodology designs such as Box-Behnken design, Central Composite design. Apart from the optimisation methodologies, the listed designs are not flexible enough in deducing properties of parameters in terms of class variables. Machine learning algorithms have unique visualisations for the dataset presented with appropriate learning algorithms. The classification algorithms cannot be applied on all datasets and selection of classifier is essential in this regard. To resolve this issue, factor-response relationship needs to be evaluated as dataset and subsequent preprocessing could lead to appropriate results. The aim of the current study was to investigate the data-mining accuracy on the dataset developed using in-vitro pyruvate production using organic sources for the first time. The attributes were subjected to comparative classification on various classifiers and based on accuracy, multilayer perceptron (neural network algorithm) was selected as classifier. As per the results, the model showed significant results for prediction of classes and a good fit. The learning curve developed also showed the datasets converging and were linearly separable.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11239041 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0306987 | PLOS |
World J Microbiol Biotechnol
January 2025
School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing, 210023, People's Republic of China.
Organic acids constitute a vital category of chemical raw materials. They have extensive applications in industries such as polymers, food, and pharmaceuticals. Currently, industrial production predominantly relies on microbial fermentation.
View Article and Find Full Text PDFNPJ Biofilms Microbiomes
January 2025
A*STAR Skin Research Labs (A*SRL), Agency for Science, Technology, and Research (A*STAR) & Skin Research Institute of Singapore (SRIS), Singapore, Republic of Singapore.
Sebaceous free fatty acids are metabolized by multiple skin microbes into bioactive lipid mediators termed oxylipins. This study investigated correlations between skin oxylipins and microbes on the superficial skin of pre-pubescent children (N = 36) and adults (N = 100), including pre- (N = 25) and post-menopausal females (N = 25). Lipidomics and metagenomics revealed that Malassezia restricta positively correlated with the oxylipin 9,10-DiHOME on adult skin and negatively correlated with its precursor, 9,10-EpOME, on pre-pubescent skin.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Stem Cell and Regenerative Medicine and Medical Biotechnology, Centre for Interdisciplinary Research, D. Y. Patil Education Society (Deemed to be University), Kolhapur 416006, MS, India. Electronic address:
Wounds are one of the most critical clinical issues in plastic surgery repair and restoration. Conventional wound dressing materials cannot absorb enough wound exudates and shield the site from microbial infection. Also, despite their healing prowess, bioactive molecules from medicinal plants are less bioavailable at the wound sites.
View Article and Find Full Text PDFMicrobiome
January 2025
Instituto de Investigación de La Viña y El Vino, Escuela de Ingeniería Agraria, Universidad de León, Avenida de Portugal, 41, León, 24009, Spain.
Dev Cell
January 2025
Program in Epithelial Biology and Center for Definitive and Curative Medicine, Stanford University, Stanford, CA, USA. Electronic address:
Human pluripotent stem cell-derived tissue engineering offers great promise for designer cell-based personalized therapeutics, but harnessing such potential requires a deeper understanding of tissue-level interactions. We previously developed a cell replacement manufacturing method for ectoderm-derived skin epithelium. However, it remains challenging to manufacture the endoderm-derived esophageal epithelium despite possessing a similar stratified epithelial structure.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!