Characterization of different-sized human αA-crystallin homomers and implications to Asp151 isomerization.

PLoS One

Institute for Integrated Radiation and Nuclear Science, Kyoto University, Kumatori-cho, Sennan-gun, Osaka, Japan.

Published: July 2024

AI Article Synopsis

  • Site-specific modifications occur in aspartate residues of αA-crystallin, particularly at Asp151, impacting lens protein stability and contributing to senile cataract formation.
  • Differences in homo-oligomeric sizes of αA-crystallin affect their structure and chaperone-like functions, with the rate of isomerization and racemization at Asp151 varying based on these sizes.
  • In vitro results show a predominant isomerization product (L-β-Asp) from deamidation of Asn151, indicating a more complex process in vivo, suggesting that the mechanisms of modification may differ significantly in a living system.

Article Abstract

Site-specific modifications of aspartate residues spontaneously occur in crystallin, the major protein in the lens. One of the primary modification sites is Asp151 in αA-crystallin. Isomerization and racemization alter the crystallin backbone structure, reducing its stability by inducing abnormal crystallin-crystallin interactions and ultimately leading to the insolubilization of crystallin complexes. These changes are considered significant factors in the formation of senile cataracts. However, the mechanisms driving spontaneous isomerization and racemization have not been experimentally demonstrated. In this study, we generated αA-crystallins with different homo-oligomeric sizes and/or containing an asparagine residue at position 151, which is more prone to isomerization and racemization. We characterized their structure, hydrophobicity, chaperone-like function, and heat stability, and examined their propensity for isomerization and racemization. The results show that the two differently sized αA-crystallin variants possessed similar secondary structures but exhibited different chaperone-like functions depending on their oligomeric sizes. The rate of isomerization and racemization of Asp151, as assessed by the deamidation of Asn151, was also found to depend on the oligomeric sizes of αA-crystallin. The predominant isomerization product via deamidation of Asn151 in the different-sized αA-crystallin variants was L-β-Asp in vitro, while various modifications occurred around Asp151 in vivo. The disparity between the findings of this in vitro study and in vivo studies suggests that the isomerization of Asp151 in vivo may be more complex than what occurs in vitro.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11238991PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0306856PLOS

Publication Analysis

Top Keywords

isomerization racemization
20
isomerization
8
αa-crystallin variants
8
oligomeric sizes
8
deamidation asn151
8
asp151 vivo
8
αa-crystallin
5
asp151
5
racemization
5
characterization different-sized
4

Similar Publications

Enantiomeric analysis of chiral drugs is very significant, as their enantiomers display different pharmacological or toxicological behavior towards living systems. Among these drugs, β-blockers are available as racemates, where their enantiomers display different pharmacological effects. Herein, we report enantioselective separation of two β-blockers, namely, atenolol and sotalol, using a derivatization approach.

View Article and Find Full Text PDF

The joint use of deep eutectic solvents (DESs) and cyclodextrins (CDs) has been well demonstrated to have a promoting effect on chiral separation in capillary electrophoresis (CE). These studies focused on constructing synergistic separation systems by adding DESs and CDs to the buffer solution respectively. In this work, for the first time, β-cyclodextrin (β-CD), methyl-β-cyclodextrin (M-β-CD), and hydroxypropyl-β-cyclodextrin (HP-β-CD) were directly used as precursors to prepare several CDs-based deep eutectic supramolecules (DESUPs) by assembling with two organic acids (L-lactic acid and L-malic acid) in different ratios through a simple two-phase mixing.

View Article and Find Full Text PDF

OSBP ligands from the ORPphilin family are chemically complex natural products with promising anticancer properties. Here, we describe macarangin B, a natural racemic flavonoid selective for OSBP, which stands out from other ORPphilins due to its structural simplicity and distinct biological activity. Using a bioinspired strategy, we synthesized both (,,) and (,,)-macarangin B enantiomers, enabling us to study their interaction with OSBP based on their unique optical properties.

View Article and Find Full Text PDF

Herein, we describe a new seven-step approach to prepare ()-1-(3,6-dibromopyridin-2-yl)-2-(3,5-difluorophenyl)ethan-1-amine (()-) from the inexpensive 2-(3,5-difluorophenyl)acetic acid. The key steps in the sequence include (1) the Weinreb amide-based ketone synthesis to provide an entry point to the core structure; (2) simple functional group transformations to afford the racemic amine -; and (3) dynamic kinetic resolution (DKR) to access the chiral amine ()-. This seven-step process delivered the enantiopure amine ()- in an overall isolated yield of approximately 15%.

View Article and Find Full Text PDF

2-hydroxy acids are organic carboxylic acids ubiquitous in the living world and are important building blocks in organic synthesis. Recently, the lactate racemase (LarA) superfamily, a diverse superfamily of 2-hydroxy acid racemases and epimerases using the nickel-pincer nucleotide (NPN) cofactor, has been uncovered. In this study, we performed a taxonomic analysis of the LarA superfamily, showing the distribution of lactate racemase homologs (LarAHs) sequences across the three domains of life.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!