This article analyzes and validates an approach of integration of adaptive dynamic programming (ADP) and adaptive fault-tolerant control (FTC) technique to address the consensus control problem for semi-Markovian jump multiagent systems having actuator bias faults. A semi-Markovian process, a more versatile stochastic process, is employed to characterize the parameter variations that arise from the intricacies of the environment. The reliance on accurate knowledge of system dynamics is overcome through the utilization of an actor-critic neural network structure within the ADP algorithm. A data-driven FTC scheme is introduced, which enables online adjustment and automatic compensation of actuator bias faults. It has been demonstrated that the signals generated by the controlled system exhibit uniform boundedness. Additionally, the followers' states can achieve and maintain consensus with that of the leader. Ultimately, the simulation results are given to demonstrate the efficacy of the designed theoretical findings.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TCYB.2024.3411310 | DOI Listing |
Sci Rep
January 2025
School of Mechanical Engineering, Shiraz University, Shiraz, Fars, 7193616548, Iran.
This paper presents a novel adaptive fault-tolerant control (AFTC) framework for systems with piezoelectric sensor patches, specifically targeting sensor faults and external disturbances. The proposed method ensures robust control of cantilever thick plates by integrating adaptive estimation to simultaneously handle sensor faults and system uncertainties, maintaining stability despite issues like drift, bias, loss of accuracy, and effectiveness. Unlike traditional approaches that address sensor faults individually, our method provides a comprehensive solution backed by Lyapunov-based stability analysis, demonstrating uniform ultimate boundedness under various fault conditions.
View Article and Find Full Text PDFJ Neuroeng Rehabil
December 2024
Chair of Autonomous Systems and Mechatronics, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany.
Wearable robots are often powered by elastic actuators, which can mimic the intrinsic compliance observed in human joints, contributing to safe and seamless interaction. However, due to their increased complexity, when compared to direct drives, elastic actuators are susceptible to faults, which pose significant challenges, potentially compromising user experience and safety during interaction. In this article, we developed a fault-tolerant control strategy for torque assistance in a knee exoskeleton and investigated user experience during a walking task while emulating faults.
View Article and Find Full Text PDFSensors (Basel)
November 2024
School of Computer Science, Northwestern Polytechnical University, Xi'an 710000, China.
As maximum power point tracking (MPPT) algorithms have developed towards multi-task intelligent computing, processors in photovoltaic power generation control systems must be capable of achieving a higher performance. However, the challenges posed by the complex environment of photovoltaic fields with regard to processor reliability cannot be overlooked. To address these issues, we proposed a novel approach.
View Article and Find Full Text PDFISA Trans
November 2024
School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China. Electronic address:
Heavy-legged robots (HLRs), integral to optimizing efficiency in manufacturing and transportation, rely on advanced active servo fault diagnosis and fault-tolerant control (FTC) mechanisms. This study presents an FTC framework with active fault status identification, fault tolerance capability assessment, and model uncertainty handling. A key contribution is the introduction of an active servo fault state estimator (ASFSE), which enables real-time monitoring of servo status by comparing residual differences between servo and controller outputs.
View Article and Find Full Text PDFISA Trans
November 2024
School of Electrical Engineering, University of Jinan, Jinan 250022, China. Electronic address:
This study presents an H fault-tolerant fuzzy intermittent control approach for the nonlinear hyperbolic partial differential equation (PDE) systems with multiple delays and actuator failures (MDAFs). Firstly, the nonlinear hyperbolic PDE systems with MDAFs are characterized by the Takagi-Sugeno (T-S) fuzzy delayed hyperbolic PDE model. Next, by employing the Lyapunov direct method, this paper demonstrates the robust exponential stability using spatial linear matrix inequalities (SLMIs) based on a new switching Lyapunov functional (LF).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!