Objective: This study aimed to investigate the role of the long noncoding RNA (lncRNA) maternally expressed gene 3 (MEG3) in the epithelial-mesenchymal transition (EMT) of bladder cancer cells and the potential mechanisms.

Methods: Cell invasion, migration, and wound healing assays were conducted to assess the effects of MEG3 on the invasive and migratory capabilities of bladder cancer cells. The expression levels of E-cadherin were measured using Western blotting, RT-qPCR, and dual luciferase reporter assays. RNA immunoprecipitation and pull-down assays were performed to investigate the interactions between MEG3 and its downstream targets.

Results: MEG3 suppressed the invasion and migration of bladder cancer cells and modulated the transcription of E-cadherin. The binding of MEG3 to the zinc finger region of the transcription factor Snail prevented its ability to transcriptionally repress E-cadherin. Additionally, MEG3 suppressed the phosphorylation of extracellular regulated protein kinase (ERK), c-Jun N-terminal kinase (JNK), and P38, thereby decreasing the expression of Snail and stimulating the expression of E-cadherin.

Conclusion: MEG3 plays a vital role in suppressing the EMT in bladder cancer cells, indicating its potential as a promising therapeutic target for the treatment of bladder cancer.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11596-024-2895-xDOI Listing

Publication Analysis

Top Keywords

bladder cancer
24
cancer cells
20
epithelial-mesenchymal transition
8
emt bladder
8
invasion migration
8
meg3 suppressed
8
meg3
7
bladder
6
cancer
6
cells
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!