Dual-Mode Fluorescent/Intelligent Lateral Flow Immunoassay Based on Machine Learning Algorithm for Ultrasensitive Analysis of Chloroacetamide Herbicides.

Anal Chem

State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China.

Published: July 2024

Given the harmful effect of pesticide residues, it is essential to develop portable and accurate biosensors for the analysis of pesticides in agricultural products. In this paper, we demonstrated a dual-mode fluorescent/intelligent (DM-f/DM-i) lateral flow immunoassay (LFIA) for chloroacetamide herbicides, which utilized horseradish peroxidase-IgG conjugated time-resolved fluorescent nanoparticle probes as both a signal label and amplification tool. With the newly developed LFIA in the DM-f mode, the limits of detection (LODs) were 0.08 ng/mL of acetochlor, 0.29 ng/mL of metolachlor, 0.51 ng/mL of Propisochlor, and 0.13 ng/mL of their mixture. In the DM-i mode, machine learning (ML) algorithms were used for image segmentation, feature extraction, and correlation analysis to obtain multivariate fitted equations, which had high reliability in the regression model with of 0.95 in the range of 2 × 10-2 × 10 pg/mL. Importantly, the practical applicability was successfully validated by determining chloroacetamide herbicides in the corn sample with good recovery rates (85.4 to 109.3%) that correlate well with the regression model. The newly developed dual-mode LFIA with reduced detection time (12 min) holds great potential for pesticide monitoring in equipment-limited environments using a portable test strip reader and laboratory conditions using ML algorithms.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.analchem.4c02500DOI Listing

Publication Analysis

Top Keywords

chloroacetamide herbicides
12
dual-mode fluorescent/intelligent
8
lateral flow
8
flow immunoassay
8
machine learning
8
newly developed
8
regression model
8
fluorescent/intelligent lateral
4
immunoassay based
4
based machine
4

Similar Publications

Chloroacetamide herbicides are widely used to control weeds globally. In this study, three acetochlor-degrading mixed cultures using nitrate, sulfate, and ferric iron as electron acceptors were isolated and determined for their degradation under anaerobic conditions. The degradation rates of all mixed pure cultures in a mineral medium were not much different at 1 µM, while the rates at 50 µM were in the order: mixed culture using nitrate > sulfate > ferric iron as electron acceptors, giving 6.

View Article and Find Full Text PDF

Despite the vital role of iron and vulnerability of iron metabolism in disease states, it remains largely unknown whether chemicals interacting with cellular proteins are responsible for perturbation of iron metabolism. We previously demonstrated that cisplatin was an inhibitor of the iron regulatory system by blocking IRP2 (iron regulatory protein 2) binding to an iron-responsive element (IRE) located in the 3'- or 5'-UTR (untranslated region) of key iron metabolism genes such as transferrin receptor 1 (TfR1) and ferritin mRNAs. To guide the development of new chemical probes to modulate the IRP-IRE regulatory system, we used an artificial intelligence (AI)-based ligand design and screened a chemical library composed of cysteine-reactive warheads.

View Article and Find Full Text PDF
Article Synopsis
  • Metabolic syndrome is on the rise globally, especially in rural areas where pesticides are frequently used, leading researchers to examine the effects of six common agricultural pesticides on fat cell development and metabolism.
  • The study found that acetochlor, one of the herbicides tested, caused fat cell growth in lab experiments and harmful effects in zebrafish, including deformities and increased death rates at certain exposure levels.
  • The research revealed that acetochlor appears to disrupt cellular lipid balance by inhibiting an important antioxidant enzyme (GPX4), causing harmful lipid buildup and triggering stress responses in cells, with potential implications for other similar herbicides.
View Article and Find Full Text PDF

Dual-Mode Fluorescent/Intelligent Lateral Flow Immunoassay Based on Machine Learning Algorithm for Ultrasensitive Analysis of Chloroacetamide Herbicides.

Anal Chem

July 2024

State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China.

Given the harmful effect of pesticide residues, it is essential to develop portable and accurate biosensors for the analysis of pesticides in agricultural products. In this paper, we demonstrated a dual-mode fluorescent/intelligent (DM-f/DM-i) lateral flow immunoassay (LFIA) for chloroacetamide herbicides, which utilized horseradish peroxidase-IgG conjugated time-resolved fluorescent nanoparticle probes as both a signal label and amplification tool. With the newly developed LFIA in the DM-f mode, the limits of detection (LODs) were 0.

View Article and Find Full Text PDF

Neurotoxicity assessment of the herbicide pethoxamid in zebrafish (Danio rerio) embryos/larvae.

Neurotoxicol Teratol

August 2024

Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA; UF Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, FL 32611, USA. Electronic address:

Pethoxamid, a member of the chloroacetamide herbicide family, is a recently approved chemical for pre- or post-emergence weed control; however, toxicity data for sublethal effects in aquatic organisms exposed to pethoxamid are non-existent in literature. To address this, we treated zebrafish embryos/larvae to pethoxamid over a 7-day period post-fertilization and evaluated several toxicological endpoints associated with oxidative stress and neurotoxicity. Continuous pethoxamid exposure did not affect survival nor hatch success in embryos/larvae for 7 days up to 1000 μg L.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!