Bimolecular rate coefficients were determined for the reaction CN( = 1) + NO and O using continuous wave cavity ringdown spectroscopy in a uniform supersonic flow (UF-CRDS). The well-matched time scales for ringdown and reaction under pseudo-first-order conditions allow for the use of the SKaR method (simultaneous kinetics and ringdown) in which the full kinetic trace is obtained on each ringdown. The reactions offer an interesting contrast in that the CN( = 1) + NO system is nonreactive and proceeds by complex-mediated vibrational relaxation, while the CN( = 1) + O reaction is primarily reactive. The measured rate coefficients at 70 K are (2.49 ± 0.08) × 10 and (10.49 ± 0.22) × 10 cm molecule s for the reaction with O and NO, respectively. The rate for reaction with O is a factor 2 lower than previously reported for = 0 in the same temperature range, a surprising result, while that for NO is consistent with extrapolation of previous high-temperature measurements to 70 K. The latter is also discussed in light of theoretical calculations and measurements of the rate constants for the association reaction in the high-pressure limit. The measurements are complicated by the presence of a metastable population of high-J CN formed by photolysis of the precursor BrCN, and a kinetic model is developed to treat the competing relaxation and reaction. It is particularly problematic for reactions at low temperatures where the rotational relaxation and reaction have similar rates, precluding a reliable determination of the rate coefficients at 30 K. Also presented are important modifications to the data acquisition and control for the instrument that have yielded considerably enhanced stability and throughput.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpca.4c02737DOI Listing

Publication Analysis

Top Keywords

rate coefficients
12
relaxation reaction
12
simultaneous kinetics
8
kinetics ringdown
8
uniform supersonic
8
supersonic flow
8
reaction
8
ringdown
5
rate
5
contrast complexity
4

Similar Publications

Rapid heating cycle molding technology has recently emerged as a novel injection molding technique, with the uniformity of temperature distribution on the mold cavity surface being a critical factor influencing product quality. A numerical simulation method is employed to investigate the rapid heating process of molds and optimize heating power, with the positions of heating rods as variables. The temperature uniformity coefficient is an indicator used to assess the uniformity of temperature distribution within a system or process, while the thermal response rate plays a crucial role in evaluating the heating efficiency of a heating system.

View Article and Find Full Text PDF

Depression Recognition Using Daily Wearable-Derived Physiological Data.

Sensors (Basel)

January 2025

Department of Psychological and Cognitive Sciences, Tsinghua University, Beijing 100084, China.

The objective identification of depression using physiological data has emerged as a significant research focus within the field of psychiatry. The advancement of wearable physiological measurement devices has opened new avenues for the identification of individuals with depression in everyday-life contexts. Compared to other objective measurement methods, wearables offer the potential for continuous, unobtrusive monitoring, which can capture subtle physiological changes indicative of depressive states.

View Article and Find Full Text PDF

Research on Fire Detection of Cotton Picker Based on Improved Algorithm.

Sensors (Basel)

January 2025

College of Mechanical and Electrical Engineering, Xinjiang Agricultural University, Urumqi 830052, China.

According to the physical characteristics of cotton and the work characteristics of cotton pickers in the field, during the picking process, there is a risk of cotton combustion. The cotton picker working environment is complex, cotton ignition can be hidden, and fire is difficult to detect. Therefore, in this study, we designed an improved algorithm for multi-sensor data fusion; built a cotton picker fire detection system by using infrared temperature sensors, CO sensors, and the upper computer; and proposed a BP neural network model based on improved mutation operator hybrid gray wolf optimizer and particle swarm optimization (MGWO-PSO) algorithm based on the BP neural network model.

View Article and Find Full Text PDF

Non-Intrusive Monitoring of Vital Signs in the Lower Limbs Using Optical Sensors.

Sensors (Basel)

January 2025

Institute for Nanostructures, Nanomodelling and Nanofabrication (i3N), Department of Physics, University of Aveiro, 3810-193 Aveiro, Portugal.

Invisible health monitoring is currently a topic of global interest within the scientific community. Sensorization of everyday objects can provide valuable health information without requiring any changes in people's routines. In this work, a feasibility study of photoplethysmography (PPG) acquisition in the lower limbs for continuous and real-time monitoring of the vital signs, including heart rate (HR) and respiratory rate (RR), is presented.

View Article and Find Full Text PDF

Heat Stroke Warning System Prototype for Athletes: A Pilot Study.

Sensors (Basel)

January 2025

Department of Sports Science and Sports Development, Faculty of Allied Health Sciences, Thammasat University, Pathumthani 12120, Thailand.

This research has developed a heat stroke warning system prototype for athletes utilizing the following sensors: DHT22, GY-906-BAA MLX90614, MAX30102. The device calculates the heat stroke risk and notifies users. The data is recorded, stored, displayed on a free-access website which graphs body temperature, ambient temperature, humidity, heart rate and heat stroke risk, and provides notifications for athletes engaged in outdoor activities.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!