Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Self-powered liquid droplet sensors based on triboelectric nanogenerators have attracted extensive attention in the field of biochemical sensing applications. Numerous research studies have investigated the effects of factors such as molecular species, molecular concentration, molecular charge, and molecular dipole moment in solution on the output electrical signals of the sensor. In this study, we prepared a self-powered droplet sensor using conductive copper film tape, polytetrafluoroethylene, and conductive aluminum foil tape. The sensor can continuously output pulsed electrical signals with minimal environmental impact. In comparison with other types of sensors, this sensor boasts a rapid response time of 10 ms and excellent sensitivity. The relationship between the friction-induced output current and voltage of the droplets and the concentration of green tea polyphenols (GTPs) was studied using the self-powered liquid droplet sensor with five different green tea samples. It was found that GTPs were the main factor contributing to the changes in output electrical signals in green tea water droplets. Fluorescence spectroscopy was used to reveal that the magnitude of the output current was inversely proportional to the concentration of GTPs in green tea. These results demonstrate the potential application of self-powered liquid droplet sensors in biochemical sensing applications based on concentration-dependent output signals.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d4nr01799d | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!