Breaking boundaries in microbiology: customizable nanoparticles transforming microbial detection.

Nanoscale

Department of Medical Biotechnology, Aarupadai Veedu Medical College, Vinayaka Mission's Research Foundation (DU), Kirumampakkam, Puducherry 607402, India.

Published: July 2024

The detection and identification of microorganisms are crucial in microbiology laboratories. Traditionally, detecting and identifying microbes require extended periods of incubation, significant manual effort, skilled personnel, and advanced laboratory facilities. Recent progress in nanotechnology has provided novel opportunities for detecting and identifying bacteria, viruses, and microbial metabolites using customized nanoparticles. These improvements are thought to have the ability to surpass the constraints of existing procedures and make a substantial contribution to the development of rapid microbiological diagnosis. This review article examines the customizability of nanoparticles for detecting bacteria, viruses, and microbial metabolites and discusses recent cutting-edge studies demonstrating the use of nanotechnology in biomedical research.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d4nr01680gDOI Listing

Publication Analysis

Top Keywords

detecting identifying
8
bacteria viruses
8
viruses microbial
8
microbial metabolites
8
breaking boundaries
4
boundaries microbiology
4
microbiology customizable
4
customizable nanoparticles
4
nanoparticles transforming
4
transforming microbial
4

Similar Publications

MicroRNA (miRNA) modulation has emerged as a promising strategy in cancer immunotherapy, particularly in converting "cold" tumors with limited immune cell infiltration into "hot" tumors responsive to immunotherapy. miRNAs regulate immune cell recruitment and activation within the tumor microenvironment, influencing tumor behavior targeting specific miRNAs in cold tumors aims to enhance the immune response, potentially improving therapeutic efficacy. Despite ongoing research challenges, such as tumor complexity and treatment resistance, miRNA-based therapies offer personalized approaches with potential ethical considerations.

View Article and Find Full Text PDF

Pericardial effusion refers to the accumulation of fluid within the pericardial sac, the double-layered membrane surrounding the heart. It can be caused by various medical conditions and may lead to serious complications if not diagnosed and managed promptly. Point-of-care ultrasound (POCUS) has emerged as a valuable tool in the clinical evaluation of pericardial effusions, offering real-time visualization and aiding in the assessment of its size, characteristics, and potential hemodynamic impact.

View Article and Find Full Text PDF

Sepsis-associated encephalopathy (SAE) is a severe and frequent septic complication, characterized by neuronal damage as key pathological features. The astrocyte-microglia crosstalk in the central nervous system (CNS) plays important roles in various neurological diseases. However, how astrocytes interact with microglia to regulate neuronal injury in SAE is poorly defined.

View Article and Find Full Text PDF

Objective: In men with a raised prostate-specific antigen (PSA), MRI increases the detection of clinically significant cancer and reduces overdiagnosis, with fewer biopsies. MRI as a screening tool has not been assessed independently of PSA in a formal screening study. We report a systematic community-based assessment of the prevalence of prostate MRI lesions in an age-selected population.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!