The Arctic region's unfavorable living conditions adversely affect the spread of infectious diseases, including COVID-19, This, in turn, can also lead to increased morbidity and mortality rates in the area due to a number of factors such as climate, environment, and high prevalence rate of pre-existing health issues like diabetes, obesity, and respiratory infections. These circumstances adversely affect maintaining the level of working capability. The aim of this paper is to investigate the ratio of immunocompetent cells involved in the adaptive post-COVID-19 immune response. The research includes an immunological assessment of 29 women aged 20-40 years residing in Arkhangelsk, Russia, six months after recovering from COVID-19. The count of leukocytes in the peripheral blood and their differential were evaluated using standard methods to assess the immunological status. To delve deeper into the immunological landscape, phenotypes of lymphocytes (CD5+, CD8+, CD10+, and CD95+) were evaluated using an indirect immunoperoxidase reaction with monoclonal antibodies on dried drop lymphocyte preparations. After incubating blood with latex molecules, the activity and quantity of phagocytes were assessed using a light microscope. The neutrophil/lymphocyte ratio was found to be inverted in the female subjects under investigation. The high concentration of cytotoxic T-lymphocytes (CD8+) and lymphocytes with apoptotic receptors (CD95+) suggests a potential correlation with a concurrent reduction in the expression of the total T-cell marker (CD5+) across all cases. This association was further linked to a decrease in lymphoproliferative activity and a relative decline in phagocytic activity. These findings led us to posit that the total recovery time after COVID-19 might extend beyond six months, indicative of a prolonged impact on the body's protective capacity. Our observations prompt the hypothesis that cellular immunity plays a crucial role in determining the severity of COVID-19 infection. Specifically, individuals with initially robust phagocytic activity may be predisposed to experiencing a milder form of the infection. However, this assumption warrants further investigation and clarification in individuals with moderate and severe disease progression (Tab. 1, Ref. 17). Keywords: arctic, COVID-19, cytotoxic t-lymphocytes, apoptosis, lymphoproliferation, cellular immunity, phagocytic activity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.4149/BLL_2024_72 | DOI Listing |
Immunology
January 2025
Singapore Immunology Network (SIgN), A*STAR, Singapore, Singapore.
Cancer is one of the leading causes of death worldwide. In recent years, immune checkpoint inhibitor therapies, in addition to standard immuno- or chemotherapy and surgical approaches, have massively improved the outcome for cancer patients. However, these therapies have their limitations and improved strategies, including access to reliable cancer vaccines, are needed.
View Article and Find Full Text PDFFront Immunol
January 2025
Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, KY, United States.
Introduction: The immune compartment within fetal chorionic villi is comprised of fetal Hofbauer cells (HBC) and invading placenta-associated maternal monocytes and macrophages (PAMM). Recent studies have characterized the transcriptional profile of the first trimester (T1) placenta; however, the phenotypic and functional diversity of chorionic villous immune cells at term (T3) remain poorly understood.
Methods: To address this knowledge gap, immune cells from human chorionic villous tissues obtained from full-term, uncomplicated pregnancies were deeply phenotyped using a combination of flow cytometry, single-cell RNA sequencing (scRNA-seq, CITE-seq) and chromatin accessibility profiling (snATAC-seq).
Front Immunol
January 2025
Dermatology Hospital, Southern Medical University, Guangzhou, China.
Background: Fibrotic skin disease represents a major global healthcare burden, characterized by fibroblast hyperproliferation and excessive accumulation of extracellular matrix components. The immune cells are postulated to exert a pivotal role in the development of fibrotic skin disease. Single-cell RNA sequencing has been used to explore the composition and functionality of immune cells present in fibrotic skin diseases.
View Article and Find Full Text PDFFront Immunol
January 2025
Fish Immunology and Vaccinology Group, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal.
Introduction: The AB-type toxin AIP56 is a key virulence factor of Photobacterium damselae subsp. piscicida (Phdp), inducing apoptosis in fish immune cells. The discovery of AIP56-like and AIP56-related toxins in diverse organisms, including human-associated Vibrio strains, highlights the evolutionary conservation of this toxin family, suggesting that AIP56 and its homologs may share conserved receptors across species.
View Article and Find Full Text PDFJ Nanobiotechnology
January 2025
Department of Nuclear Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, 519000, China.
Background: Incomplete radiofrequency ablation (iRFA) stimulates residual hepatocellular carcinoma (HCC) metastasis, leading to a poor prognosis for patients. Therefore, it is imperative to develop an effective therapeutic strategy to prevent iRFA-induced HCC metastasis.
Results: Our study revealed that iRFA induced an abnormal increase in ROS levels within residual HCC, which enhanced tumor cell invasiveness and promoted macrophage M2 polarization, ultimately facilitating HCC metastasis.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!