The immobilization of biocatalysts on inorganic supports allows the development of bio-nanohybrid materials with defined functional properties. Gold nanomaterials (AuNMs) are the main players in this field, due to their fascinating shape-dependent properties that account for their versatility. Even though incredible progress has been made in the preparation of AuNMs, few studies have been carried out to analyze the impact of particle morphology on the behavior of immobilized biocatalysts. Herein, the artificial peroxidase Fe(iii)-Mimochrome VI*a (FeMC6*a) was conjugated to two different anisotropic gold nanomaterials, nanorods (AuNRs) and triangular nanoprisms (AuNTs), to investigate how the properties of the nanosupport can affect the functional behavior of FeMC6*a. The conjugation of FeMC6*a to AuNMs was performed by a click-chemistry approach, using FeMC6*a modified with pegylated aza-dibenzocyclooctyne (FeMC6*a-PEG@DBCO), which was allowed to react with azide-functionalized AuNRs and AuNTs, synthesized from citrate-capped AuNMs. To this end, a literature protocol for depleting CTAB from AuNRs was herein reported for the first time to prepare citrate-AuNTs. The overall results suggest that the nanomaterial shape influences the nanoconjugate functional properties. Besides giving new insights into the effect of the surfaces on the artificial peroxidase properties, these results open up the way for creating novel nanostructures with potential applications in the field of sensing devices.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11232542PMC
http://dx.doi.org/10.1039/d4na00344fDOI Listing

Publication Analysis

Top Keywords

artificial peroxidase
12
functional properties
8
gold nanomaterials
8
properties
5
biohybrid materials
4
materials comprising
4
comprising artificial
4
peroxidase differently
4
differently shaped
4
shaped gold
4

Similar Publications

Phosphorus-solubilizing fungi promote the growth of P. Y. Li by regulating physiological and biochemical reactions and protecting enzyme system-related gene expression.

Front Genet

January 2025

Chongqing Engineering Laboratory of Green Planting and Deep Processing of Famous-Region Drug in the Three Gorges Reservoir Region, College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing, China.

Introduction: P. Y. Li is a plant used to treat respiratory diseases such as pneumonia, bronchitis, and influenza.

View Article and Find Full Text PDF

Resveratrol is a polyphenol compound showing strong antioxidant properties. It is believed that semen cryopreservation causes significant sperm losses which eventually affects sperm quality. Improving antioxidant status of semen may reduce this damage and enhance sperm fertilizing potential.

View Article and Find Full Text PDF

The characteristics of the tumor microenvironment (TME) have a close and internal correlation with the effect of cancer immunotherapy, significantly affecting the progression and metastasis of cancer. The rational design of nanoenzymes that possess the ability to respond to and regulate the TME is driving a new direction in catalytic immunotherapy. In this study, we designed a multifunctional manganese (Mn)-based nanoenzyme that is responsive to acidic pH and overxpressed HO at tumor site and holds capability of modulating hypoxic and immunosuppressive TME for synergistic anti-tumor photothermal/photodynamic/immunotherapy.

View Article and Find Full Text PDF

Accurate, specific, and cost-effective detection of toxic cyanogenic glycosides is crucial for ensuring biological health and food safety. In this study, a novel biosensor based on co-immobilized multi-enzyme system was constructed by artificial antibody-antigen-directed immobilization for the colorimetric detection of amygdalin through a cascade reaction catalyzed by β-glucosidase, glucose oxidase, and horseradish peroxidase. Artificial antibodies and antigens were prepared using catechol and 3,4-dihydroxybenzaldehyde, respectively, to generate mutual affinity recognition ability for enzyme immobilization.

View Article and Find Full Text PDF

Machine learning assisted multi-signal nanozyme sensor array for the antioxidant phenolic compounds intelligent recognition.

Food Chem

January 2025

Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No.29 of 13th Street, TEDA, Tianjin 300457, PR China. Electronic address:

Identifying antioxidant phenolic compounds (APs) in food plays a crucial role in understanding their biological functions and associated health benefits. Here, a bifunctional Cu-1,3,5-benzenetricarboxylic acid (Cu-BTC) nanozyme was successfully prepared. Due to the excellent laccase-like behavior of Cu-BTC, it can catalyze the oxidation of various APs to produce colored quinone imines.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!