A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Biomineralization-inspired synthesis of autologous cancer vaccines for personalized metallo-immunotherapy. | LitMetric

Biomineralization-inspired synthesis of autologous cancer vaccines for personalized metallo-immunotherapy.

iScience

Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren' ai Road, Suzhou, Jiangsu 215123, P.R. China.

Published: July 2024

Autologous cancer vaccines represent a promising therapeutic approach against tumor relapse. Herein, a concise biomineralization strategy was developed to prepare an immunostimulatory autologous cancer vaccine through protein antigen-mediated growth of flower-like manganese phosphate (MnP) nanoparticles. In addition to inheriting the cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS)-stimulator of interferon genes (STING)-activating capacity of Mn, the resulting ovalbumin (OVA)-loaded MnP (OVA@MnP) nanoparticles with superior stability and pH-responsiveness enabled efficient priming of antigen-specific CD8 T cell expansion through promoting the endo/lysosome escape and subsequent antigen cross-presentation of OVA. Resultantly, OVA@MnP vaccines upon subcutaneous vaccination elicited both prophylactic and therapeutic effects against OVA-expressing B16-F10 melanoma. Furthermore, the biomineralized autologous cancer vaccines prepared from the whole tumor cell lysates of the dissected tumors suppressed the growth of residual tumors, particularly in combination with anti-PD-1 immunotherapy. This study highlights a simple biomineralization approach for the controllable synthesis of cGAS-STING-activating autologous cancer vaccines to suppress postsurgical tumor relapse.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11233966PMC
http://dx.doi.org/10.1016/j.isci.2024.110189DOI Listing

Publication Analysis

Top Keywords

autologous cancer
20
cancer vaccines
16
tumor relapse
8
autologous
5
cancer
5
vaccines
5
biomineralization-inspired synthesis
4
synthesis autologous
4
vaccines personalized
4
personalized metallo-immunotherapy
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!