Theiler's murine encephalomyelitis virus (TMEV) infected mice have been often used as an animal model for Multiple sclerosis (MS) due to their similar pathology in the central nervous system (CNS). So far, there has been no effective treatment or medicine to cure MS completely. The drugs used in the clinic can only reduce the symptoms of MS, delay its recurrence, and increase the interval between relapses. MS can be caused by many factors, and clinically MS drugs are used to treat MS regardless of what factors are caused rather than MS caused by a specific factor. This can lead to inappropriate medicine, which may be one of the reasons why MS has not been completely cured. Therefore, this review summarized the drugs investigated in the TMEV-induced disease (TMEV-IDD) model of MS, so as to provide medication guidance and theoretical basis for the treatment of virus-induced MS.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11233754 | PMC |
http://dx.doi.org/10.3389/fmicb.2024.1415365 | DOI Listing |
Sci Rep
December 2024
Institute of Pharmacology and Toxicology, School of Veterinary Medicine, Freie Universität Berlin, Koserstraße 20, 14195, Berlin, Germany.
Despite the international effort to improve laboratory animal welfare through the 3R principles (Reduce, Refine, Replace), many scientists still fail to implement and report their assessment of pain and well-being, likely due to concerns regarding the potential effects of analgesics on experimental outcomes. This study aimed to determine whether refining our viral encephalitis model with perioperative analgesia could enhance well-being and recovery after intracerebral virus infection without impacting disease outcomes. We routinely use the Theiler's Murine Encephalomyelitis Virus (TMEV) model to study virus-induced epilepsy.
View Article and Find Full Text PDFLab Anim
December 2024
Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.
Pre-immunization with inactivated antigens has been developed as an alternative to the use of 'dirty' mice, which in contrast to specific pathogen free (SPF) mice, harbour a range of pathogens. Within certain research areas, such mice are considered better models for humans than SPF mice, as they have an immune system that better mirrors human immunity. We inactivated murine adenovirus type 1 (FL), minute virus of mice, mouse hepatitis virus (A59), respirovirus muris (Sendai), Theiler's encephalomyelitis virus (GD7) and by ultraviolet irradiation.
View Article and Find Full Text PDFCurr Neurol Neurosci Rep
November 2024
Neuroscience Department, Meyer Children's Hospital IRCCS, Viale Pieraccini 24, 50139, Florence, Italy.
Purpose Of Review: This review examines the role of different viral infections in epileptogenesis, with a focus on Herpesviruses such as Human Herpesvirus 6 (HHV-6) and Epstein Barr Virus (EBV), Flaviviruses, Picornaviruses, Human Immunodeficiency Virus (HIV), Influenzavirus and Severe Acute Respiratory Syndrome CoronaVirus 2 (SARS-CoV-2).
Recent Findings: A growing literature on animal models, such as the paradigmatic Theiler's murine encephalomyelitis virus (TMEV) model, and clinical investigations in patients with epilepsy have started to elucidate cellular mechanisms implicated in seizure initiation and development of epilepsy following viral infections. A central role of neuroinflammation has emerged, with evidence of activation of the innate and adaptive immunity, dysregulation of microglial and astrocytic activity and production of multiple cytokines and other inflammatory mediators.
Ann Neurol
November 2024
Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland.
Objective: Excitotoxicity is a common hallmark of epilepsy and other neurological diseases associated with elevated extracellular glutamate levels. Thus, here, we studied the protective effects of (R)-AS-1, a positive allosteric modulator (PAM) of glutamate uptake in epilepsy models.
Methods: (R)-AS-1 was evaluated in a range of acute and chronic seizure models, while its adverse effect profile was assessed in a panel of standard tests in rodents.
BMC Bioinformatics
September 2024
Hemostasis Branch 1, Division of Hemostasis, Office of Plasma Protein Therapeutics CMC, Office of Therapeutic Products, Center for Biologics Evaluation and Research (CBER), US Food and Drug Administration (FDA), Silver Spring, MD, USA.
Mouse (Mus musculus) models have been heavily utilized in developmental biology research to understand mammalian embryonic development, as mice share many genetic, physiological, and developmental characteristics with humans. New explorations into the integration of temporal (stage-specific) and transcriptional (tissue-specific) data have expanded our knowledge of mouse embryo tissue-specific gene functions. To better understand the substantial impact of synonymous mutational variations in the cell-state-specific transcriptome on a tissue's codon and codon pair usage landscape, we have established a novel resource-Mouse Embryo Codon and Codon Pair Usage Tables (Mouse Embryo CoCoPUTs).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!