Background: Ferroptosis, an iron-dependent form of cell death that is characterized by lipid peroxidation, has been implicated in conferring resistance to cancer therapies and may contribute to the pathogenesis of esophageal squamous cell carcinoma (ESCC). Furthermore, messenger RNA (mRNA) vaccines have emerged as a promising modality in the treatment arsenal against diverse malignancies. The aim of the study was to investigate the role of ferroptosis subtypes in ESCC and the immune microenvironment, as well as to identify key genes that could serve as targets for mRNA vaccine development.
Methods: Gene expression profiles and clinical data from 79 and 358 ESCC patients were collected from The Cancer Genome Atlas and Gene Expression Omnibus databases. Subsequently, we identified tumor mutational burden (TMB), immune microenvironment scores, and immune checkpoint and immune cell dysfunction genes for each ferroptosis subtype. Furthermore, we utilized weighted gene co-expression network analysis (WGCNA) to describe the immune landscape of ESCC and identify key genes for mRNA vaccine development.
Results: Our analysis revealed that , , and were overexpressed ferroptosis genes in ESCC. In addition, ESCC was categorized into two ferroptosis subtypes, namely FS1 and FS2. Notably, FS2 exhibited a poorer prognosis, higher TMB, and increased immune cell infiltration when compared to FS1. The ferroptosis landscape analysis further revealed the presence of three distinct states. WGCNA analysis identified different modules of interest emerging as an independent prognostic factor and enriched with hub genes that could serve as targets for mRNA vaccine development.
Conclusions: The ferroptosis subtypes demonstrated significant associations with both prognosis and the immune microenvironment in ESCC. Additionally, the module of interest identified through immune landscape analysis represented an independent prognostic factor, with its contained genome offering promising targets for mRNA vaccine development.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11231762 | PMC |
http://dx.doi.org/10.21037/tcr-23-2027 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!