A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The prognostic value of immune escape-related genes in lung adenocarcinoma. | LitMetric

AI Article Synopsis

  • Lung adenocarcinoma (LUAD) is the most prevalent form of lung cancer, and its progression is largely hindered by immune escape, making it a crucial area of study for improving immunotherapy outcomes.* -
  • The research involves analyzing RNA data from LUAD patients, identifying 3112 key genes, and intersecting them with known immune escape genes to assess their roles and pathways in LUAD through various computational methods.* -
  • A prognostic risk model based on significant genes was created and validated through additional datasets, enabling better predictions of patient outcomes and understanding of tumor immune status.*

Article Abstract

Background: Lung cancer is one of the most common cancers in humans, and lung adenocarcinoma (LUAD) has become the most common histological type of lung cancer. Immune escape promotes progression of LUAD from the early to metastatic late stages and is one of the main obstacles to improving clinical outcomes for immunotherapy targeting immune detection points. Our study aims to explore the immune escape related genes that are abnormally expressed in lung adenocarcinoma, providing assistance in predicting the prognosis of lung adenocarcinoma and targeted.

Methods: RNA data and related clinical details of patients with LUAD were obtained from The Cancer Genome Atlas (TCGA) database. Through weighted gene coexpression network analysis (WGCNA), 3112 key genes were screened and intersected with 182 immune escape genes obtained from a previous study to identify the immune escape-related genes (IERGs). The role of IERGs in LUAD was systematically explored through gene ontology (GO) and Kyoto Encyclopedia of Genes and Genome (KEGG) analyses, which were used to enrich the relevant pathways of IERGs. The least absolute shrinkage and selection operator (LASSO) algorithm and multivariate Cox regression analysis were used to identify the key prognostic genes, and a prognostic risk model was constructed. Estimation of Stromal and Immune Cells in Malignant Tumor Tissues Using Expression Data (ESTIMATE) and microenvironment cell populations (MCP) counter methods (which can accurately assess the amount of eight immune cell populations and two stromal cell groups) were used to analyze the tumor immune status of the high and low risk subgroups. The protein expression level of the differentially expressed genes in lung cancer samples was determined by using the Human Protein Atlas (HPA) database. A nomogram was constructed, and the prognostic risk model was verified via the Gene Expression Omnibus (GEO) datasets GSE72094 and GSE30219.

Results: Twenty differentially expressed IERGs were obtained. GO analysis of these 20 IERGs revealed that they were mainly associated with the regulation of immune system processes, immune responses, and interferon-γ enrichment in mediating signaling pathways and apoptotic signaling pathways; meanwhile, KEGG analysis revealed that IERGs were associated with necroptosis, antigen processing and presentation, programmed cell death ligand 1 (PD-L1) expression and programmed cell death 1 (PD-1) pathway in tumors, cytokine-cytokine receptor interactions, T helper cell 1 (Th1) and Th2 differentiation, and tumor necrosis factor signaling pathways. Using LASSO and Cox regression analysis, we constructed a four-gene model that could predict the prognosis of patients with LUAD, and the model was validated with a validation cohort. The immunohistochemical results of the HPA database showed that and had low expression in normal lung tissue but high expression in lung cancer tissue.

Conclusions: We constructed an IERG-based model for predicting the prognosis of LUAD. Among the genes identified, and may be potential prognostic and therapeutic targets, and reducing their expression may represent a novel approach in the treatment of LUAD.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11231773PMC
http://dx.doi.org/10.21037/tcr-23-2295DOI Listing

Publication Analysis

Top Keywords

lung adenocarcinoma
16
lung cancer
16
immune escape
12
signaling pathways
12
immune
10
genes
9
lung
9
immune escape-related
8
escape-related genes
8
genes lung
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!