In context with the scientific evidence of aerosol deposition induced snow and glacier melt, this paper provides baseline information about the spatiotemporal variability of aerosols and snow-ice chemistry filling the data and knowledge gap over the western Himalaya, India based on recently published paper [1]. A systematic approach was employed that entailed analysis of aerosol variability over four decades using MERRA-2 (Modern-Era Retrospective analysis for Research and Applications) data over five major mountain ranges in the western Himalaya. Further, data about nine physicochemical parameters was generated over three selected glaciers in the study area. HYSPLIT (HYbrid Single Particle Lagrangian Integrated Trajectory) model simulated air mass sources at weekly intervals. This dataset is valuable for future investigations aimed at understanding and characterizing the impacts of light-absorbing impurities on radiative forcing, albedo changes, snow-melt, glacier recession and water quality in the western Himalaya.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11233891PMC
http://dx.doi.org/10.1016/j.dib.2024.110602DOI Listing

Publication Analysis

Top Keywords

western himalaya
16
light-absorbing impurities
8
impurities glacial
4
glacial environments
4
western
4
environments western
4
himalaya
4
himalaya reanalysis
4
data
4
reanalysis data
4

Similar Publications

Background And Aims: Understanding interspecific differences in plant growth rates and their internal and external drivers is key to predicting species responses to ongoing environmental changes. Annual growth rates vary among plants based on their ecological preferences, growth forms, ecophysiological adaptations, and evolutionary history. However, the relative importance of these factors remains unclear, particularly in high-mountain ecosystems experiencing rapid changes.

View Article and Find Full Text PDF

Background: The rising costs of synthetic fertilizers highlight the need for eco-friendly alternatives to enhance essential oil production in aromatic plants. This study evaluated the effects of red algae seaweed extract [Solieria chordalis (C. Agardh) J.

View Article and Find Full Text PDF

Background: The endangered Kashmir musk deer (Moschus cupreus), native to high-altitude Himalayas, is an ecological significant and endangered ungulate, threatened by habitat loss and poaching for musk pod distributed in western Himalayan ranges of India, Nepal and Afghanistan. Despite its critical conservation status and ecological importance in regulating vegetation dynamics, knowledge gaps persist regarding its population structure and genetic diversity, hindering effective management strategies.

Methods And Results: We aimed to understand the population genetics of Kashmir musk deer in north-western Himalayas using two mitochondrial DNA (mtDNA) regions and 11 microsatellite loci.

View Article and Find Full Text PDF

Glaciers of Jammu and Kashmir are retreating faster than those in the broader northwestern Himalayas, yet some glaciers in the Chenab River basin display signs of periodic advancement and mass gain (2005-2007). These features, such as coalescing lobate structures and blocked meltwater streams, raise intriguing questions about localized glacier dynamics. While global concerns over climate change and glacier retreat persist, the lack of detailed evidence regarding glacier advance in this region warrants further investigation.

View Article and Find Full Text PDF

Indian Himalayan Region (IHR) supports a plethora of biodiversity with a unique assemblage of many charismatic and endemic species. We assessed the genetic diversity, demographic history, and habitat suitability of blue sheep (Pseudois nayaur) in the IHR through the analysis of the mitochondrial DNA (mtDNA) control region (CR) and Cytochrome b gene, and 14 ecological predictor variables. We observed high genetic divergence and designated them into two genetic lineage groups, i.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!