Plasmon-enhanced fluorescence for biophotonics and bio-analytical applications.

Front Chem

Division of Vaccine Research, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, United States.

Published: June 2024

Fluorescence spectroscopy serves as an ultrasensitive sophisticated tool where background noises which serve as a major impediment to the detection of the desired signals can be safely avoided for detections down to the single-molecule levels. One such way of bypassing background noise is plasmon-enhanced fluorescence (PEF), where the interactions of fluorophores at the surface of metals or plasmonic nanoparticles are probed. The underlying condition is a significant spectral overlap between the localized surface plasmon resonance (LSPR) of the nanoparticle and the absorption or emission spectra of the fluorophore. The rationale being the coupling of the excited state of the fluorophore with the localized surface plasmon leads to an augmented emission, owing to local field enhancement. It is manifested in enhanced quantum yields concurrent with a decrease in fluorescence lifetimes, owing to an increase in radiative rate constants. This improvement in detection provided by PEF allows a significant scope of expansion in the domain of weakly emitting fluorophores which otherwise would have remained unperceivable. The concept of coupling of weak emitters with plasmons can bypass the problems of photobleaching, opening up avenues of imaging with significantly higher sensitivity and improved resolution. Furthermore, amplification of the emission signal by the coupling of free electrons of the metal nanoparticles with the electrons of the fluorophore provides ample opportunities for achieving lower detection limits that are involved in biological imaging and molecular sensing. One avenue that has attracted significant attraction in the last few years is the fast, label-free detection of bio-analytes under physiological conditions using plasmonic nanoparticles for point-of-care analysis. This review focusses on the applications of plasmonic nanomaterials in the field of biosensing, imaging with a brief introduction on the different aspects of LSPR and fabrication techniques.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11233826PMC
http://dx.doi.org/10.3389/fchem.2024.1407561DOI Listing

Publication Analysis

Top Keywords

plasmon-enhanced fluorescence
8
plasmonic nanoparticles
8
localized surface
8
surface plasmon
8
fluorescence biophotonics
4
biophotonics bio-analytical
4
bio-analytical applications
4
applications fluorescence
4
fluorescence spectroscopy
4
spectroscopy serves
4

Similar Publications

Currently commercial colorimetric paper lateral flow immunoassays exhibit insufficient limit of detection (LOD) and limited clinical sensitivity toward the detection of SARS-CoV-2 antigens, which causes a high false negative rate. To mitigate this issue, a new plasmon-enhanced fluorescence probe was developed for paper lateral flow strips (PLFSs). The probe is made of a sandwich-structured Ag-core@silica@dye@silica-shell nanoparticle in which fluorescent dyes are sandwiched between the plasmonic Ag core and the silica outer shell, and the separation distance between the Ag core and the dye molecules is controlled by the silica space layer.

View Article and Find Full Text PDF

Programmable DNA Nanoswitch-Regulated Plasmonic CRISPR/Cas12a-Gold Nanostars Reporter Platform for Nucleic Acid and Non-Nucleic Acid Biomarker Analysis Assisted by a Spatial Confinement Effect.

Nano Lett

January 2025

Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China.

CRISPR/Cas 12a system based nucleic acid and non-nucleic acid targets detection faces two challenges including (1) multiple crRNAs are needed for multiple biomarkers detection and (2) insufficient sensitivity resulted from photobleaching of fluorescent dyes and the low kinetic cleavage rate for a traditional single-strand (ssDNA) reporter. To address these limitations, we developed a programmable DNA nanoswitch (NS)-regulated plasmonic CRISPR/Cas12a-gold nanostars (Au NSTs) reporter platform for detection of nucleic acid and non-nucleic acid biomarkers with the assistance of the spatial confinement effect. Through simply programming the target recognition sequence in NS, only one crRNA is required to detect both nucleic acid and non-nucleic acid biomarkers.

View Article and Find Full Text PDF

Plasmon-Enhanced Luminescence of Gold Nanoclusters by Using Silver and Gold Metal Nanostructures.

Chem Asian J

January 2025

Departamento de Química, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, 7800003, Santiago, Chile.

Plasmonic materials can be utilized as effective platforms to enhance luminescent signals of luminescent metal nanoclusters (LMNCs). Both surface enhanced fluorescence (SEF) and shell-isolated nanoparticle-enhanced fluorescence (SHINEF) strategies take advantage of the localized and increased external electric field created around the plasmonic metal surface when excited at or near their characteristic plasmonic resonance. In this context, we present an experimental and computational study of different plasmonic composites, (Ag) Ag@SiO and (Au) Au@SiO nanoparticles, which were used to enhance the luminescent signal of Au nanoclusters coated with glutathione (GSH) molecule (AuGSH NCs).

View Article and Find Full Text PDF

Plasmon-Enhanced Fluorescence of Single Extracellular Vesicles Captured in Arrayed Aluminum Nanoholes.

ACS Omega

December 2024

Division of Solid-State Electronics, Department of Electrical Engineering, The Ångström Laboratory, Uppsala University, SE-751 03 Uppsala, Sweden.

Extracellular vesicles (EVs) are nanoparticles encapsulated with a lipid bilayer, and they constitute an excellent source of biomarkers for multiple diseases. However, the heterogeneity in their molecular compositions constitutes a major challenge for their recognition and profiling, thereby limiting their application as an effective biomarker. A single-EV analysis technique is crucial to both the discovery and the detection of EV subpopulations that carry disease-specific signatures.

View Article and Find Full Text PDF
Article Synopsis
  • The aging population is leading to a significant rise in Alzheimer's disease cases, making early detection crucial.
  • Researchers developed a plasmon-enhanced fluorescence (PEF) sensor using gold nanobipyramids (Au NBPs) to visually detect amyloid-beta protein aggregation, a key marker for Alzheimer's.
  • The sensor utilizes a near-infrared fluorescent substance for a highly sensitive detection method, which allows real-time monitoring of Aβ aggregation in human neuroblastoma cells, showing potential as an effective diagnostic tool for Alzheimer's disease.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!