Background: Polycystic Ovary Syndrome (PCOS) is a highly prevalent, complex, heterogeneous, polygenic endocrine disorder characterized by metabolic and reproductive dysfunction that affects 8-13% of women of reproductive age worldwide. The pathogenesis of PCOS has not been fully clarified and includes genetics, obesity, and insulin resistance (IR). Oxidative stress (OS) of PCOS is independent of obesity. It can induce IR through post-insulin receptor defects, impair glucose uptake in muscle and adipose tissue, and exacerbate IR by reducing insulin secretion from pancreatic β-cells.
Objective: To investigate the effects of Calorie Restricted Diet (CRD), High Protein Diet (HPD), and High Protein and High Dietary Fiber Diet (HPD+HDF) on body composition, insulin resistance, and oxidative stress in overweight/obese PCOS patients.
Methods: A total of 90 overweight/obese patients with PCOS were selected to receive an 8- week medical nutrition weight loss intervention at our First Hospital of Peking University, and we randomly divided them into the CRD group (group A), the HPD group (group B), and the HPD+HDF group (group C), with 30 patients in each group. We measured their body composition, HOMA-IR index, and oxidative stress indicators. The t-test, Mann-Whitney U test, analysis of variance (ANOVA), and Kruskal-Wallis H test were used to compare the efficacy of the three methods.
Results: After eight weeks, the body weights of the three groups decreased by 6.32%, 5.70% and 7.24%, respectively, and the Visceral Fat Area (VFA) values decreased by 6.8 cm, 13.4 cm and 23.45 cm, respectively, especially in group C ( <0.05). The lean body mass (LBM), also known as the Fat-Free Mass (FFM) values of group B and group C after weight loss, were higher than that of group A ( <0.05). After weight loss, the homeostatic model assessment of insulin resistance (HOMA-IR) index and malondialdehyde (MDA) were decreased. Superoxide dismutase (SOD) was increased in all three groups ( <0.05), and the changes in SOD and MDA in group B and group C were more significant ( <0.05). HOMA-IR index positively correlated with body mass index (BMI) (r=0.195; <0.05); MDA positively correlated with percent of body fat (PBF) (r=0.186; <0.05) and HOMA-IR index (r=0.422; <0.01); SOD positively correlated with LMI/FFMI (r=0.195; <0.05), negatively correlated with HOMA-IR index (r=-0.433; <0.01).
Conclusion: All three diets were effective in reducing the body weight of overweight/obese patients with PCOS by more than 5% within 8 weeks and could improve both insulin resistance and oxidative stress damage. Compared with CRD, HPD and HPD+HDF diets could better retain lean body mass and significantly improve oxidative stress damage.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2174/0118715303286777240223074922 | DOI Listing |
J Diet Suppl
January 2025
Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy.
Background: Several epidemiological studies and intervention trials have demonstrated that grapes and blueberries, which are rich in flavanols, can lower the risk of cardiovascular disease. However, the mechanisms of action of these compounds remain unclear due to their low bioavailability.
Objective: This study aimed to characterize the sensory properties, blood flow velocity, and oxidative stress of a polyphenol rich grape and blueberry extract (PEGB) containing approximately 16% flavanols (11% monomers and 4% dimers).
ACS Appl Mater Interfaces
January 2025
State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
Anemia is a potentially life-threatening blood disorder caused by an insufficient erythroblast volume in the circulatory system. Self-renewal failure of erythroblast progenitors is one of the key pathological factors leading to erythroblast deficiency. However, there are currently no effective drugs that selectively target this process.
View Article and Find Full Text PDFACS Biomater Sci Eng
January 2025
Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian-Taiwan Science and Technology Cooperation Base of Biomedical Materials and Tissue Engineering, Engineering Research Center of Industrial Biocatalysis, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China.
Development of radiosensitizers with high-energy deposition efficiency, electron transfer, and oxidative stress amplification will help to improve the efficiency of radiotherapy. To overcome the drawbacks of radiotherapy alone, it is also crucial to design a multifunctional radiosensitizer that simultaneously realizes multimodal treatment and tumor microenvironment modulation. Herein, a multifunctional radiosensitizer based on the CuBiS-BP@PEI nanoheterostructure (NHS) for multimodal cancer treatment is designed.
View Article and Find Full Text PDFAppl Biochem Biotechnol
January 2025
Department of Pharmacology, Faculty of Veterinary Medicine, Assiut University, Assiut, 71516, Egypt.
Doxorubicin (DOX) is a commonly used chemotherapeutic medication for treating malignancies, although its cardiotoxicity limits its use. There is growing evidence that alteration of the mitochondrial fission/fusion dynamic processes accompanied by excessive reactive oxygen species (ROS) production and alteration of calcium Ca homeostasis are potential underlying mechanisms of DOX-induced cardiotoxicity (DIC). Metformin (Met) is an AMP-activated protein kinase (AMPK) activator that has antioxidant properties and cardioprotective effects.
View Article and Find Full Text PDFFASEB J
January 2025
Department of Eye Center, Xiangya Hospital, Central South University, Changsha, China.
Fatty acid binding proteins (FABPs) are a class of small molecular mass intracellular lipid chaperone proteins that bind to hydrophobic ligands, such as long-chain fatty acids. FABP5 expression was significantly upregulated in the N-methyl-d-aspartic acid (NMDA) model, the microbead-induced chronic glaucoma model, and the DBA/2J mice. Previous studies have demonstrated that FABP5 can mediate mitochondrial dysfunction and oxidative stress in ischemic neurons, but the role of FABP5 in oxidative stress and cell death in retina NMDA injury models is unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!