Organic Donor-Acceptor-Donor Trimers Nanoparticles Stabilized by Amphiphilic Block Copolymers for Photocatalytic Generation of H.

Macromol Rapid Commun

Univ. Bordeaux, Laboratoire de Chimie des Polymères Organiques (LCPO, UMR 5629), CNRS, Bordeaux INP, Pessac, F-33607, France.

Published: September 2024

Photocatalytic generation of H via water splitting emerges as a promising avenue for the next generation of green hydrogen due to its low carbon footprint. Herein, a versatile platform is designed to the preparation of functional π-conjugated organic nanoparticles dispersed in aqueous phase via mini-emulsification. Such particles are composed of donor-acceptor-donor (DAD) trimers prepared via Stille coupling, stabilized by amphiphilic block copolymers synthesized by reversible addition-fragmentation chain transfer polymerization. The hydrophilic segment of the block copolymers will not only provide colloidal stability, but also allow for precise control over the surface functionalization. Photocatalytic tests of the resulting particles for H production resulted in promising photocatalytic activity (≈0.6 mmol g h). This activity is much enhanced compared to that of DAD trimers dispersed in the water phase without stabilization by the block copolymers.

Download full-text PDF

Source
http://dx.doi.org/10.1002/marc.202400395DOI Listing

Publication Analysis

Top Keywords

block copolymers
16
stabilized amphiphilic
8
amphiphilic block
8
photocatalytic generation
8
dad trimers
8
organic donor-acceptor-donor
4
donor-acceptor-donor trimers
4
trimers nanoparticles
4
nanoparticles stabilized
4
block
4

Similar Publications

Synthesis and Characterization of Poly(ethylene furanoate)/Poly(ε-caprolactone) Block Copolymers.

J Am Soc Mass Spectrom

January 2025

Laboratory of Chemistry and Technology of Polymers and Colors, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece.

Biobased poly(ethylene furanoate) (PEF)/poly(ε-caprolactone) (PCL) block copolymers have been synthesized using ring opening polymerization (ROP) of ε-caprolactone (ε-CL) in the presence of PEF in different mass ratios. An increase in intrinsic viscosity is observed for the block copolymers with higher ε-CL content due to the extension of their macromolecular chain. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MS) was employed to understand the composition and structure of the produced block copolymers.

View Article and Find Full Text PDF

Proteases, an important class of enzymes that cleave proteins and peptides, carry a wealth of potentially useful information. Devices to enable routine and cost effective measurement of their activity could find frequent use in clinical settings for medical diagnostics, as well as some industrial contexts such as detecting on-line biological contamination. In particular, devices that make use of readouts involving magnetic particles may offer distinct advantages for continuous sensing because material they release can be magnetically captured downstream and their readout is insensitive to optical properties of the sample.

View Article and Find Full Text PDF

Optimizing Surface Maleimide/cRGD Ratios Enhances Targeting Efficiency of cRGD-Functionalized Nanomedicines.

J Am Chem Soc

January 2025

Department of Pharmacy, The First Affiliated Hospital of University of Science and Technology of China (USTC), Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, Anhui Province, China.

Thiol-maleimide (MI) chemistry is a cornerstone of bioconjugation strategies, particularly in the development of drug delivery systems. The cyclic arginine-glycine-aspartic acid (cRGD) peptide, recognized for its ability to target the integrin αβ, is commonly employed to functionalize maleimide-bearing nanoparticles (NPs) for fabricating cRGD-functionalized nanomedicines. However, the impact of cRGD density on tumor targeting efficiency remains poorly understood.

View Article and Find Full Text PDF

Poly(-lysine)--poly(ethylene glycol)--poly(-lysine) triblock copolymers for the preparation of flower micelles and their irreversible hydrogel formation.

Sci Technol Adv Mater

November 2024

Department of Materials Science, Institute of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan.

Poly(-lysine)--poly(ethylene glycol)--poly(-lysine) (PLys--PEG--PLys) triblock copolymers formed polyion complex (PIC) with poly(acrylic acid) (PAAc) or sodium poly(styrenesulfonate) (PSS), leading to the formation of flower micelle-type nanoparticles (Nano or Nano) with tens of nanometers size in water at a polymer concentration of 10 mg/mL. The flower micelles exhibited irreversible temperature-driven sol-gel transitions at physiological ionic strength, even at low polymer concentrations such as 40 mg/mL, making them promising candidates for injectable hydrogel applications. Rheological studies showed that the chain length of PLys segments and the choice of polyanions significantly impacted irreversible hydrogel formation, with PSS being superior to PAAc for the formation.

View Article and Find Full Text PDF

ConspectusStructural DNA nanotechnology offers a unique self-assembly toolbox to construct soft materials of arbitrary complexity, through bottom-up approaches including DNA origami, brick, wireframe, and tile-based assemblies. This toolbox can be expanded by incorporating interactions orthogonal to DNA base-pairing such as metal coordination, small molecule hydrogen bonding, π-stacking, fluorophilic interactions, or the hydrophobic effect. These interactions allow for hierarchical and long-range organization in DNA supramolecular assemblies through a DNA-minimal approach: the use of fewer unique DNA sequences to make complex structures.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!