AI Article Synopsis

  • Photocatalytic ozonation is an effective method for treating stubborn organic pollutants, but designing efficient catalysts for this process is challenging.
  • Surface modification of catalysts, specifically using hydroxyl (TiO-OH) versus fluorine (TiO-F), can enhance their effectiveness, with DFT calculations showing that TiO-OH has superior oxygen adsorption and activation.
  • Experimental results confirm that TiO-OH outperforms TiO-F and other photocatalysts, achieving an 84.4% total organic carbon removal rate within two hours, highlighting the benefits of surface hydroxylation in catalyst design.

Article Abstract

Photocatalytic ozonation is considered to be a promising approach for the treatment of refractory organic pollutants, but the design of efficient catalyst remains a challenge. Surface modification provides a potential strategy to improve the activity of photocatalytic ozonation. In this work, density functional theory (DFT) calculations were first performed to check the interaction between O and TiO-OH (surface hydroxylated TiO) or TiO-F (surface fluorinated TiO), and the results suggest that TiO-OH displays better O adsorption and activation than does TiO-F, which is confirmed by experimental results. The surface hydroxyl groups greatly promote the O activation, which is beneficial for the generation of reactive oxygen species (ROS). Importantly, TiO-OH displays better performance towards pollutants (such as berberine hydrochloride) removal than does TiO-F and most reported ozonation photocatalysts. The total organic carbon (TOC) removal efficiency reaches 84.4 % within two hours. This work highlights the effect of surface hydroxylation on photocatalytic ozonation and provides ideas for the design of efficient photocatalytic ozonation catalysts.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.202401380DOI Listing

Publication Analysis

Top Keywords

photocatalytic ozonation
20
design efficient
8
tio-oh displays
8
displays better
8
ozonation
6
surface
5
enhanced photocatalytic
4
ozonation modified
4
modified tio
4
tio designed
4

Similar Publications

Combined Catalytic Conversion of NOx and VOCs: Present Status and Prospects.

Materials (Basel)

December 2024

School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China.

This article presents a comprehensive examination of the combined catalytic conversion technology for nitrogen oxides (NOx) and volatile organic compounds (VOCs), which are the primary factors contributing to the formation of photochemical smog, ozone, and PM2.5. These pollutants present a significant threat to air quality and human health.

View Article and Find Full Text PDF

Carbon nitride grafted with single-atom manganese and 2-hydroxy-4,6-dimethylpyrimidine: A visible-light-driven photocatalyst for enhanced ozonation of organic pollutants.

J Colloid Interface Sci

December 2024

State Key Laboratory of Photocatalysis On Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, PR China. Electronic address:

The development of durable and highly efficient visible-light-driven photocatalysts is essential for the photocatalytic ozonation process towards degrading organic pollutants. This study presents CN-MA, a novel photocatalyst synthesized by grafting carbon nitride (CN) with single-atom Mn and 2-hydroxy-4,6-dimethylpyrimidine (HDMP) via one-step thermal polymerization. Experimental characterization and theoretical calculation results reveal that incorporating single-atom Mn and HDMP into CN alters the charge density distribution on the heptazine rings.

View Article and Find Full Text PDF

Application of advance oxidation processes for elimination of carbamazepine residues in soils.

J Environ Manage

December 2024

Research Group on Sustainability and Quality of Fruit and Vegetable Production. Instituto Murciano de Investigación y Desarrollo Agrario y Medioambiental. C/ Mayor s/n. La Alberca, 30150, Murcia. Spain. Electronic address:

The reuse of treated wastewater for agricultural irrigation has enlarged the risk of pharmaceutical compound accumulation in soil and their potential translocation to crops. Therefore, it is necessary to apply effective techniques to remove these pollutants from soil. This work was aimed to study the effectiveness of two advance oxidation processes (photocatalysis and ozonation) in the degradation of carbamazepine (CBZ) residues in three different soil matrices.

View Article and Find Full Text PDF

Microplastics (MPs) pollution has emerged as a global environmental concern due to its detrimental impacts on ecosystems. Conventional wastewater/water treatment methods are inadequate for MPs removal due to their diminutive size ranging from micrometers to nanometers. Advanced oxidation processes (AOPs) have gained attention as a promising green strategy for the efficient and safe elimination of MPs from aqueous systems.

View Article and Find Full Text PDF

The role of TiO and gCN bimetallic catalysts in boosting antibiotic resistance gene removal through photocatalyst assisted peroxone process.

Sci Rep

October 2024

Institute of Functional Interfaces (IFG), Microbiology/Molecular Biology Department, Karlsruhe Institute of Technology (KIT), Hermann von Helmholtz Platz 1, 76344, Eggenstein-Leopoldshafen, Germany.

Antibiotics are extensively used in human medicine, aquaculture, and animal husbandry, leading to the release of antimicrobial resistance into the environment. This contributes to the rapid spread of antibiotic-resistant genes (ARGs), posing a significant threat to human health and aquatic ecosystems. Conventional wastewater treatment methods often fail to eliminate ARGs, prompting the adoption of advanced oxidation processes (AOPs) to address this growing risk.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!