Automatic localization of cochlear implant electrodes using cone beam computed tomography images.

Biomed Eng Online

Department of Otolaryngology, Hannover Medical School, Karl-Wiechert-Allee 3, 30625, Hannover, Germany.

Published: July 2024

Background: Cochlear implants (CI) are implantable medical devices that enable the perception of sounds and the understanding of speech by electrically stimulating the auditory nerve in case of inner ear damage. The stimulation takes place via an array of electrodes surgically inserted in the cochlea. After CI implantation, cone beam computed tomography (CBCT) is used to evaluate the position of the electrodes. Moreover, CBCT is used in research studies to investigate the relationship between the position of the electrodes and the hearing outcome of CI user. In clinical routine, the estimation of the position of the CI electrodes is done manually, which is very time-consuming.

Results: The aim of this study was to optimize procedures of automatic electrode localization from CBCT data following CI implantation. For this, we analyzed the performance of automatic electrode localization for 150 CBCT data sets of 10 different types of electrode arrays. Our own implementation of the method by Noble and Dawant (Lecture notes in computer science (Including subseries lecture notes in artificial intelligence and lecture notes in bioinformatics), Springer, pp 152-159, 2015. https://doi.org/10.1007/978-3-319-24571-3_19 ) for automated electrode localization served as a benchmark for evaluation. Differences in the detection rate and the localization accuracy across types of electrode arrays were evaluated and errors were classified. Based on this analysis, we developed a strategy to optimize procedures of automatic electrode localization. It was shown that particularly distantly spaced electrodes in combination with a deep insertion can lead to apical-basal confusions in the localization procedure. This confusion prevents electrodes from being detected or assigned correctly, leading to a deterioration in localization accuracy.

Conclusions: We propose an extended cost function for automatic electrode localization methods that prevents double detection of electrodes to avoid apical-basal confusions. This significantly increased the detection rate by 11.15 percent points and improved the overall localization accuracy by 0.53 mm (1.75 voxels). In comparison to other methods, our proposed cost function does not require any prior knowledge about the individual cochlea anatomy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11562364PMC
http://dx.doi.org/10.1186/s12938-024-01249-5DOI Listing

Publication Analysis

Top Keywords

electrode localization
20
automatic electrode
16
position electrodes
12
lecture notes
12
localization
9
electrodes
8
cone beam
8
beam computed
8
computed tomography
8
optimize procedures
8

Similar Publications

Efficient Methanol Oxidation Kinetics Enabled by an Ordered Heterocatalyst with Dual Electric Fields.

J Am Chem Soc

January 2025

Key Laboratory of Precision and Intelligent Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China.

Induced by a sharp-tip-enhanced electric field, periodical nanoassemblies can regulate the reactant flux on the electrode surface, efficiently optimizing the mass transfer kinetics in electrocatalysis. However, when the nanoscale building blocks in homoassemblies are arranged densely, it results in the overlap and reduction of the local electric field. Herein, we present a comprehensive kinetic heteromodel that simultaneously couples the sharp-tip-enhanced electric field and charge transfer electric field between different building blocks with any arrangement densities.

View Article and Find Full Text PDF

Understanding the dynamics of injected charge carriers is crucial for the analysis of the perovskite light-emitting diode (PeLED) operation. The behavior of the injected carriers largely dictates the external quantum efficiency (EQE) roll-off at high current densities and the temperature dependence of the EQE in PeLEDs. However, limitations such as sample capacitance and external circuitry hinder precise control of carrier injection rates, making it challenging to directly track the dynamics of individual carriers.

View Article and Find Full Text PDF

Building Localized NADP(H) Recycling Circuits to Advance Enzyme Cascadetronics.

Angew Chem Int Ed Engl

January 2025

University of Oxford, Chemistry, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND.

The catalytic action of enzymes of a cascade trapped within a mesoporous electrode material is simultaneously energized, controlled and observed through the efficient, reversible electrochemical NAD(P)(H) recycling catalyzed by one of the enzymes. In their nanoconfined state, nicotinamide cofactors are tightly channeled current carriers, mediating multi-step reactions in either direction (oxidation or reduction) with a rapid response time. By incorporating a hydrogen‑borrowing enzyme pair, the internal action of which opposes the external voltage bias driving oxidation or reduction, a reduction process can be performed under overall oxidizing conditions, and vice versa.

View Article and Find Full Text PDF

Targeted Docking of Localized Hydrogen Bond for Efficient and Reversible Zinc-Ion Batteries.

Angew Chem Int Ed Engl

January 2025

Central South University, material science and engineering, 932 Lushan Road, 410083, Changsha, CHINA.

Hydrogen bond (HB) chemistry, a pivotal feature of aqueous zinc-ion batteries, modulates electrochemical processes through weak electrostatic interactions among water molecules. However, significant challenges persist, including sluggish desolvation kinetics and inescapable parasitic reactions at the electrolyte-electrode interface, associated with high water activity and strong Zn2+-solvent coordination. Herein, a targeted localized HB docking mechanism is activated by the polyhydroxy hexitol-based electrolyte, optimizing Zn2+ solvation structures via dipole interaction and reconstructing interfacial HB networks through preferential parallel adsorption.

View Article and Find Full Text PDF

This work proposes a large aperture liquid crystal lens array based on a novel layered combined electrode (LCE) structure. A large aperture (800µm) is achieved by strategically positioning pixel electrodes on either side of the LC lens and auxiliary electrodes at its center. This design effectively doubles the LC lens aperture compared to conventional structures, achieving this at a significantly lower voltage.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!