Land-use change is the main driver of carbon storage change in terrestrial ecosystems. Currently, domestic and international studies mainly focus on the impact of carbon storage changes on climate, while studies on the impact of land-use changes on carbon storage in complex terrestrial ecosystems are few. The Jialing River Basin (JRB), with a total area of ~ 160,000 km, diverse topography, and elevation differences exceeding 5 km, is an ideal case for understanding the complex interactions between land-use change and carbon storage dynamics. Taking the JRB as our study area, we analyzed land-use changes from 2000 to 2020. Subsequently, we simulated land-use patterns for business-as-usual (BAU), cropland protection (CP), and ecological priority (EP) scenarios in 2035 using the PLUS model. Additionally, we assessed carbon storage using the InVEST model. This approach helps us to accurately understand the carbon change processes in regional complex terrestrial ecosystems and to formulate scientifically informed land-use policies. The results revealed the following: (1) Cropland was the most dominant land-use type (LUT) in the region, and it was the only LUT experiencing net reduction, with 92.22% of newly designated construction land originating from cropland. (2) In the JRB, total carbon storage steadily decreased after 2005, with significant spatial heterogeneity. This pattern was marked by higher carbon storage levels in the north and lower levels in the south, with a distinct demarcation line. The conversion of cropland to construction land is the main factor driving the reduction in carbon storage. (3) Compared with the BAU and EP scenarios, the CP scenario demonstrated a smaller reduction in cropland area, a smaller addition to construction land area, and a lower depletion in the JRB total carbon storage from 2020 to 2035. This study demonstrates the effectiveness of the PLUS and InVEST models in analyzing complex ecosystems and offers data support for quantitatively assessing regional ecosystem services. Strict adherence to the cropland replenishment task mandated by the Chinese government is crucial to increase cropland areas in the JRB and consequently enhance the carbon sequestration capacity of its ecosystem. Such efforts are vital for ensuring the food and ecological security of the JRB, particularly in the pursuit of the "dual-carbon" objective.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11237025PMC
http://dx.doi.org/10.1038/s41598-024-66742-2DOI Listing

Publication Analysis

Top Keywords

carbon storage
40
land-use changes
12
carbon
12
terrestrial ecosystems
12
jrb total
12
construction land
12
storage
10
changes carbon
8
jialing river
8
river basin
8

Similar Publications

Ecosystem functioning and management are primarily concerned with addressing climate change and biodiversity loss, which are closely linked to carbon stock and species diversity. This research aimed to quantify forest understory (shrub and herb) diversity, tree biomass and carbon sequestration in the Binsar Wildlife Sanctuary. Using random sampling methods, data were gathered from six distinct forest communities.

View Article and Find Full Text PDF

This research examines the possibility of palm oil and oil palm trunk biochar (OPTB) from pyrolysis effectively serving as alternative processing oils and fillers, substituting petroleum-based counterparts in natural rubber (NR) composites. Chemical, elemental, surface and morphological analyses were used to characterize both carbon black (CB) and OPTB, by using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET) gas porosimetry, and scanning electron microscopy (SEM). The influences of OPTB contents from 0 to 100 parts per hundred rubber (phr) on thermal, dielectric, dynamic mechanical, and cure characteristics, and the key mechanical properties of particulate NR-composites were investigated.

View Article and Find Full Text PDF

Cellulose-Based Materials and Their Application in Lithium-Sulfur Batteries.

Polymers (Basel)

January 2025

Instituto de Investigaciones en Físico-Química de Córdoba (INFIQC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba 5000, Argentina.

Lithium-sulfur (Li-S) batteries are promising candidates for next-generation energy storage due to their high energy density, cost-effectiveness, and environmental friendliness. However, their commercialization is hindered by challenges, such as the polysulfide shuttle effect, lithium dendrite growth, and low electrical conductivity of sulfur cathodes. Cellulose, a natural, renewable, and versatile biopolymer, has emerged as a multifunctional material to address these issues.

View Article and Find Full Text PDF

Due to the high viscosity and low fluidity of viscous crude oil, how to effectively recover spilled crude oil is still a major global challenge. Although solar thermal absorbers have made significant progress in accelerating oil recovery, its practical application is largely restricted by the variability of solar radiation intensity, which is influenced by external environmental factors. To address this issue, this study created a new composite fiber that not only possesses solar energy conversion and storage capabilities but also facilitates crude oil removal.

View Article and Find Full Text PDF

Co-Optimization Operation of Distribution Network-Containing Shared Energy Storage Multi-Microgrids Based on Multi-Body Game.

Sensors (Basel)

January 2025

Xi'an Power Supply Company, State Grid Shaanxi Electric Power Co., Ltd., Xi'an 710032, China.

Under the carbon peaking and carbon neutrality target background, efficient collaborative scheduling between distribution networks and multi-microgrids is of great significance for enhancing renewable energy accommodation and ensuring stable system operation. Therefore, this paper proposes a collaborative optimization method for the operation of distribution networks and multi-microgrids with shared energy storage based on a multi-body game. The method is modeled and solved in two stages.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!