Cardiovascular diseases, including heart failure, stroke, and hypertension, affect 608 million people worldwide and cause 32% of deaths. Combination therapy is required in 60% of patients, involving concurrent Renin-Angiotensin-Aldosterone-System (RAAS) and Neprilysin inhibition. This study introduces a novel multi-target in-silico modeling technique (mt-QSAR) to evaluate the inhibitory potential against Neprilysin and Angiotensin-converting enzymes. Using both linear (GA-LDA) and non-linear (RF) algorithms, mt-QSAR classification models were developed using 983 chemicals to predict inhibitory effects on Neprilysin and Angiotensin-converting enzymes. The Box-Jenkins method, feature selection method, and machine learning algorithms were employed to obtain the most predictive model with ~ 90% overall accuracy. Additionally, the study employed virtual screening of designed scaffolds (Chalcone and its analogues, 1,3-Thiazole, 1,3,4-Thiadiazole) applying developed mt-QSAR models and molecular docking. The identified virtual hits underwent successive filtration steps, incorporating assessments of drug-likeness, ADMET profiles, and synthetic accessibility tools. Finally, Molecular dynamic simulations were then used to identify and rank the most favourable compounds. The data acquired from this study may provide crucial direction for the identification of new multi-targeted cardiovascular inhibitors.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11237057 | PMC |
http://dx.doi.org/10.1038/s41598-024-66230-7 | DOI Listing |
In Silico Pharmacol
January 2025
Laboratory of Drug Discovery and Ecotoxicology, Department of Pharmacy, Guru Ghasidas Vishwavidyalaya, Bilaspur, 495009 India.
Abstract: Alzheimer's disease (AD) and Parkinson's disease (PD) are neurological conditions that primarily impact the elderly having distinctive traits and some similarities in terms of symptoms and progression. The multifactorial nature of AD and PD encourages exploring potentiality of multi-target therapy for addressing these conditions to conventional, the "one drug one target" strategy. This study highlights the searching of potential HDAC4 inhibitors through multiple screening approaches.
View Article and Find Full Text PDFFront Chem
January 2025
Department of Surgery, Pirogov Russian National Research Medical University, Moscow, Russia.
Cannabinoid and stilbenoid compounds derived from were screened against eight specific fungal protein targets to identify potential antifungal agents. The proteins investigated included Glycosylphosphatidylinositol (GPI), Enolase, Mannitol-2-dehydrogenase, GMP synthase, Dihydroorotate dehydrogenase (DHODH), Heat shock protein 90 homolog (Hsp90), Chitin Synthase 2 (CaChs2), and Mannitol-1-phosphate 5-dehydrogenase (M1P5DH), all of which play crucial roles in fungal survival and pathogenicity. This research evaluates the binding affinities and interaction profiles of selected cannabinoids and stilbenoids with these eight proteins using molecular docking and molecular dynamics simulations.
View Article and Find Full Text PDFCurr Med Chem
January 2025
Laboratory of Analytical and Molecular Chemistry, Faculty of Sciences Ben M'Sik, Hassan II University of Casablanca, Sidi Othman, Box 7955, Casablanca, Morocco.
Alzheimer's disease (AD) is a chronic and progressive neurodegenerative brain disorder, primarily affecting the elderly. Its socio-economic impact and mortality rate are alarming, necessitating innovative approaches to drug discovery. Unlike single-target diseases, Alzheimer's multifactorial nature makes single-target approaches less effective.
View Article and Find Full Text PDFJ Infect Public Health
February 2025
Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar. Electronic address:
Int J Biol Macromol
January 2025
Department of Chemical Sciences, University of Naples "Federico II", Via Cintia, 21, 80126 Napoli, Italy; CEINGE Advanced Biotechnologies s.c.a r.l. "Franco Salvatore", Via Gaetano Salvatore 486, 80131 Napoli, Italy. Electronic address:
SARS-CoV-2 encodes a 3C-like protease (3CL) that is essential for viral replication. This cysteine protease cleaves viral polyproteins to release functional nonstructural proteins, making it a prime target for antiviral drug development. We investigated the inhibitory effects of halicin, a known c-Jun N-terminal kinase inhibitor, on 3CL.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!