A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Effect of bridge height on airflow and aeolian sand flux near surface along the Qinghai-Tibet Railway, China. | LitMetric

Effect of bridge height on airflow and aeolian sand flux near surface along the Qinghai-Tibet Railway, China.

Sci Rep

Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands / Dunhuang Gobi Desert Ecology and Environment Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China.

Published: July 2024

In this work, we studied the near-surface flow field structure of railway bridges with different heights through field investigation and wind tunnel simulation experiments. Meanwhile, we simulated the distribution of sand accumulation around a bridge via CFD software based on the sand accumulation around the Basuoqu bridge in the Cuona Lake section of the Qinghai-Tibet Railway. Results show that the sand around this railway bridge is mainly from the lake sediment on the west side of the railway and the weathered detritus on the east side. The height of the railway bridge in the sandy area affects the distribution of the near-surface flow field and the variation in speed on both sides of the bridge. The wind speed trough on both sides of the 6 m high bridge is higher, and the horizontal distance between the wind speed trough and the bridge section is 1.5 times that of the 3 m high bridge. Wind speed attenuates in a certain range on the windward and leeward sides of the bridge, forming an aeolian area; under the beam body, it is affected by the narrow tube effect, forming a wind erosion area. The height of the bridge determines its sand transport capacity. Under certain wind conditions, the overhead area at the bottom of the 3 m high bridge and its two sides do not have the sand transport capacity, so sand accumulates easily. Nevertheless, the sand accumulation phenomenon gradually disappears with the increase in bridge clearance height. The objectives of this study are to reveal the formation mechanism of sand damage for railway bridges, provide theoretical support for the scientific design of railway bridges in sandy areas, and formulate reasonable railway sand prevention measures to ensure the safety of railway running, which have certain theoretical significance and practical value.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11237094PMC
http://dx.doi.org/10.1038/s41598-024-66647-0DOI Listing

Publication Analysis

Top Keywords

bridge
13
railway bridges
12
sand accumulation
12
wind speed
12
high bridge
12
sand
10
railway
10
qinghai-tibet railway
8
near-surface flow
8
flow field
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!