Hyperactivity mediated by synaptotoxic β-amyloid (Aβ) oligomers is one of the earliest forms of neuronal dysfunction in Alzheimer's disease. In the search for a preventive treatment strategy, we tested the effect of scavenging Aβ peptides before Aβ plaque formation. Using in vivo two-photon calcium imaging and SF-iGluSnFR-based glutamate imaging in hippocampal slices, we demonstrate that an Aβ binding anticalin protein (Aβ-anticalin) can suppress early neuronal hyperactivity and synaptic glutamate accumulation in the APP23xPS45 mouse model of β-amyloidosis. Our results suggest that the sole targeting of Aβ monomers is sufficient for the hyperactivity-suppressing effect of the Aβ-anticalin at early disease stages. Biochemical and neurophysiological analyses indicate that the Aβ-anticalin-dependent depletion of naturally secreted Aβ monomers interrupts their aggregation to neurotoxic oligomers and, thereby, reverses early neuronal and synaptic dysfunctions. Thus, our results suggest that Aβ monomer scavenging plays a key role in the repair of neuronal function at early stages of AD.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11237084PMC
http://dx.doi.org/10.1038/s41467-024-50153-yDOI Listing

Publication Analysis

Top Keywords

monomer scavenging
8
anticalin protein
8
neuronal hyperactivity
8
alzheimer's disease
8
early neuronal
8
aβ monomers
8
7
neuronal
5
β-amyloid monomer
4
scavenging anticalin
4

Similar Publications

Investigation of chitin grafting: thermal, antioxidant and antitumor properties.

Discov Nano

January 2025

Institute of Science, Department of Chemistry, Firat University, 23200, Elazığ, Turkey.

In this study, firstly chitin was reacted with chloracetyl chloride to synthesize the macroinitiator chitinchloroacetate (Ch.ClAc). Then, graft copolymers of methacrylamide (MAM), diacetone acrylamide (DAAM), N-(4-nitrophenyl)acrylamide (NPA), and 2-hydroxyethyl methacrylate (HEMA) monomers were synthesized by atom transfer radical polymerization (ATRP).

View Article and Find Full Text PDF

Background: Several epidemiological studies and intervention trials have demonstrated that grapes and blueberries, which are rich in flavanols, can lower the risk of cardiovascular disease. However, the mechanisms of action of these compounds remain unclear due to their low bioavailability.

Objective: This study aimed to characterize the sensory properties, blood flow velocity, and oxidative stress of a polyphenol rich grape and blueberry extract (PEGB) containing approximately 16% flavanols (11% monomers and 4% dimers).

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a neurodegenerative disease that is significantly characterized by cognitive and memory impairments, which worsen significantly with age. In the late stages of AD, metal ion disorders and an imbalance of reactive oxygen species (ROS) levels occur in the brain microenvironment, which causes abnormal aggregation of β-amyloid (Aβ), leading to a significant worsening of the AD symptoms. Therefore, we designed a composite nanomaterial of macrophage membranes-encapsulated Prussian blue nanoparticles (PB NPs/MM).

View Article and Find Full Text PDF

Alzheimer's disease (AD), the predominant form of dementia, is a neurodegenerative disorder of the central nervous system (CNS) characterized by a subtle onset and a spectrum of cognitive and functional declines. The clinical manifestation of AD encompasses memory deficits, cognitive deterioration, and behavioral disturbances, culminating in a severe impairment of daily living skills. Despite its high prevalence, accounting for 60-70% of all dementia cases, there remains an absence of curative therapeutics.

View Article and Find Full Text PDF

A novel bioactive and functional exopolysaccharide from the cyanobacterial strain Arthrospira maxima cultivated under salinity stress.

Bioprocess Biosyst Eng

December 2024

Department of Chemical and Biological Engineering, Laboratory of Protein Engineering and Bioactive Molecules (LR11ES24), INSAT, University of Carthage, BP 676, 1080, Tunis Cedex, Tunisia.

Cyanobacterial exopolysaccharides (EPS) remain released by cyanobacteria in the surrounding environment with the main purpose of protection against harmful environmental conditions. Recently, they have received significant attention due to their unique structural characteristics, functional properties, and potential applications across various fields. The current study describes the evaluation of EPS production under salinity stress from Arthrospira maxima.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!