Experimental autoimmune encephalomyelitis (EAE) serves as a model for studying multiple sclerosis, with immunization strategies utilizing myelin oligodendrocyte glycoprotein (MOG) peptide, emulsified in adjuvant enriched with Mycobacterium tuberculosis (Mtb). This study examined the effects of Bacillus Calmette-Guérin (BCG) as an adjuvant, alongside the impact of MOG peptide doses and their residual counter ions on EAE development. We found that BCG can be effectively used to induce EAE with similar incidence and severity as heat-killed H37Ra, contingent upon the appropriate MOG peptide dose. Different immunization doses of MOG peptide significantly affect EAE development, with higher doses leading to a paradoxical reduction in disease activity, probably due to peripheral tolerance mechanisms. Furthermore, doses of MOG peptides with acetate showed a more pronounced effect on disease development compared to those containing trifluoroacetic acid (TFA), suggesting the potential influence of residual counter ions on EAE activity. We highlighted the feasibility of applying BCG to the establishment of EAE for the first time. Our findings emphasized the importance of MOG peptide dosage and composition in modulating EAE development, offering insights into the mechanisms of autoimmunity and tolerance. This could have implications for autoimmune disease research and the design of therapeutic strategies.

Download full-text PDF

Source
http://dx.doi.org/10.1538/expanim.24-0012DOI Listing

Publication Analysis

Top Keywords

mog peptide
20
eae development
12
myelin oligodendrocyte
8
oligodendrocyte glycoprotein
8
bacillus calmette-guérin
8
experimental autoimmune
8
autoimmune encephalomyelitis
8
residual counter
8
counter ions
8
ions eae
8

Similar Publications

Induction of Antigen-Specific Tolerance in a Multiple Sclerosis Model without Broad Immunosuppression.

ACS Nano

January 2025

Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States.

Multiple sclerosis (MS) is a severe autoimmune disorder that wreaks havoc on the central nervous system, leading to a spectrum of motor and cognitive impairments. There is no cure, and current treatment strategies rely on broad immunosuppression, leaving patients vulnerable to infections. To address this problem, our approach aims to induce antigen-specific tolerance, a much-needed shift in MS therapy.

View Article and Find Full Text PDF

Recent successes in the identification of biomarkers and therapeutic targets for diagnosing and managing neurological diseases underscore the critical need for cutting-edge biobanks in the conduct of high-caliber translational neuroscience research. Biobanks dedicated to neurological disorders are particularly timely, given the increasing prevalence of neurological disability among the rising aging population. Translational research focusing on disorders of the central nervous system (CNS) poses distinct challenges due to the limited accessibility of CNS tissue pre-mortem.

View Article and Find Full Text PDF

Human microbiome-derived peptide affects the development of experimental autoimmune encephalomyelitis via molecular mimicry.

EBioMedicine

December 2024

Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China; Shenzhen Research Institute, City University of Hong Kong, Shenzhen, China. Electronic address:

Background: Gut commensal microbiota has been identified as a potential environmental risk factor for multiple sclerosis (MS), and numerous studies have linked the commensal microorganism with the onset of MS. However, little is known about the mechanisms underlying the gut microbiome and host-immune system interaction.

Methods: We employed bioinformatics methodologies to identify human microbial-derived peptides by analyzing their similarity to the MHC II-TCR binding patterns of self-antigens.

View Article and Find Full Text PDF

Background: Myelin oligodendrocyte glycoprotein 35-55 (MOG)-peptide induced experimental autoimmune encephalomyelitis (EAE) is a model for inflammation of the brain and spinal cord. However, its severity and incidence vary within and between laboratories. Severe scores can lead to premature termination and are both unnecessary for readouts and detrimental to animal welfare.

View Article and Find Full Text PDF
Article Synopsis
  • The NOTCH2NLC gene is linked to several neurological disorders through expansions of GGC repeats in its 5' untranslated region, which can lead to conditions like Parkinson's, dementia, and tremors.
  • The study used cellular models and CRISPR-Cas9 engineered mice with specific GGC repeat variations to investigate the effects of these repeats, particularly focusing on those with serine insertions.
  • Results showed that a specific intermediate repeat with serine insertion caused mitochondrial dysfunction and neurotoxicity, leading to PD-like symptoms in mice, including neuronal loss and behavioral impairments.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!