Background: Sarcopenia, characterized by progressive muscle dysfunction, is a common complication of chronic obstructive pulmonary disease (COPD). Our previous study revealed serum Lipoprotein-associated phospholipaseA2 (Lp-PLA2) level significantly increased in COPD and associated with exercise tolerance. This study further investigated the functions and target potential of Lp-PLA2 for sarcopenia in COPD.
Methods: The circulating Lp-PLA2 level/enzyme activity in COPD patients and age-matched healthy volunteers were measured. Clinical parameters on skeletal muscle were measured and their correlations with Lp-PLA2 were analyzed. We explored the involvement of Lp-PLA2 in vivo and treatment effectiveness of darapladib (a specific Lp-PLA2 inhibitor) in CS-induced muscle dysfunction models.
Results: Circulating Lp-PLA2 level/enzyme activity was elevated in COPD patients compared with healthy controls, negatively associated with skeletal muscle mass and function. In CS-induced muscle dysfunction murine models, up-regulated serum Lp-PLA2 level/enzyme activity was verified again. In CS-exposed mouse models, darapladib treatment reversed muscle mass loss and muscle dysfunction, meanwhile rescued upregulation of MuRF1 and atrogin-1, and activation of inflammatory factors, oxidant enzymes and NF-κB signaling.
Conclusions: Lp-PLA2 could be a potential indicator for sarcopenia in COPD. Darapladib, a Lp-PLA2 inhibitor, can alleviate CS-induced skeletal muscle dysfunction and represents a potential therapeutic for sarcopenia in COPD.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2024.133741 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!