Precision engineering of antibodies: A review of modification and design in the Fab region.

Int J Biol Macromol

College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China. Electronic address:

Published: August 2024

The binding of functional groups to antibodies is crucial for disease treatment, diagnosis, and basic scientific research. Traditionally, antibody modifications have focused on the Fc region to maintain antigen-antibody binding activity. However, such modifications may impact critical antibody functions, including immune cell surface receptor activation, cytokine release, and other immune responses. In recent years, modifications targeting the antigen-binding fragment (Fab) region have garnered increasing attention. Precise modifications of the Fab region not only maximize the retention of antigen-antibody binding capacity but also enhance numerous physicochemical properties of antibodies. This paper reviews the chemical, biological, biochemical, and computer-assisted methods for modifying the Fab region of antibodies, discussing their advantages, limitations, recent advances, and future trends.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2024.133730DOI Listing

Publication Analysis

Top Keywords

fab region
16
antigen-antibody binding
8
region
5
precision engineering
4
antibodies
4
engineering antibodies
4
antibodies review
4
review modification
4
modification design
4
fab
4

Similar Publications

Crystal Structures of Antigen-Binding Fragment of Anti-Osteocalcin Antibody KTM219.

Int J Mol Sci

January 2025

Department of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, Ueda 386-8567, Nagano, Japan.

Osteocalcin is a useful biomarker for bone formation and bone-related diseases. KTM219 is an anti-osteocalcin C-terminal peptide antibody. The single-chain variable region (scFv) and antigen-binding fragment (Fab) of KTM219 are applicable to the Quenchbody (Q-body) immunoassay.

View Article and Find Full Text PDF

Anti-Idiotypic Antibody as a Booster Vaccine Against Respiratory Syncytial Virus.

Vaccines (Basel)

January 2025

Infectious Diseases and Vaccine Research, Merck & Co., Inc., Rahway, NJ 07065, USA.

The respiratory syncytial virus (RSV) is a major cause of lower respiratory tract infections in children and adults. With nearly everyone infected by the age of five, there is an opportunity to develop booster vaccines that enhance B-cell immunity, promoting potent and broadly neutralizing antibodies. One potential approach involves using anti-idiotypic antibodies (anti-IDs) to mimic specific antigenic sites and enhance preexisting immunity in an epitope-specific manner.

View Article and Find Full Text PDF

Should digoxin immune fab be administered based solely on reported ingested amount in acute digoxin poisoning?

Am J Emerg Med

January 2025

Minnesota Regional Poison Center, Department of Pharmacy, Hennepin Healthcare, Minneapolis, MN, USA; Department of Family Medicine and Biobehavioral Health, University of Minnesota Medical School, Duluth Campus, Duluth, MN, USA. Electronic address:

Acute digoxin poisoning is increasingly uncommon in emergency medicine. Furthermore, controversy exists regarding indications for antidotal digoxin immune fab in acute poisoning. In healthy adults, the fab prescribing information recommends administration based on "known consumption of fatal doses of digoxin: ≥10mg," while many emergency medicine textbooks suggest fab administration be driven by clinical features or potassium concentration.

View Article and Find Full Text PDF

The B domain of protein A is a biotechnologically important three-helix bundle protein. It binds the Fc fragment of antibodies with helix 1/2 and the Fab region with helix 2/3. Here we designed a helix shuffled variant by changing the connectivity of the helices, in order to redesign the helix bundle, yielding altered helix-loop-helix properties.

View Article and Find Full Text PDF

Identification of unique binding mode anti-NTF3 antibodies from a novel long VH CDR3 phage display library.

SLAS Discov

January 2025

Biologics Engineering, Oncology R&D, AstraZeneca, Cambridge, UK. Electronic address:

Neurotrophic factor 3 (NTF3) is a cysteine knot protein and a member of the nerve growth factor (NGF) family of cytokines. NTF3 engages the Trk family of receptor tyrosine kinases, playing a pivotal role in the development and function of both the central and peripheral nervous systems. Its involvement in neuronal survival, differentiation, and growth links NTF3 to a spectrum of neurodegenerative diseases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!