Engineering Gluconbacter oxydans with efficient co-utilization of glucose and sorbitol for one-step biosynthesis of 2-keto-L-gulonic.

Bioresour Technol

Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China. Electronic address:

Published: August 2024

As the highest-demand vitamin, the development of a one-step vitamin C synthesis process has been slow for a long time. In previous research, a Gluconobacter oxydans strain (GKLG9) was constructed that can directly synthesize 2-keto-L-gulonic acid (2-KLG) from glucose, but carbon source utilization remained low. Therefore, this study first identified the gene 4kas (4-keto-D-arabate synthase) to reduce the loss of extracellular carbon and inhibit the browning of fermentation broth. Then, promoter engineering was conducted to enhance the intracellular glucose transport pathway and concentrate intracellular glucose metabolism on the pentose phosphate pathway to provide more reducing power. Finally, by introducing the D-sorbitol pathway, the titer of 2-KLG was increased to 38.6 g/L within 60 h in a 5-L bioreactor, with a glucose-to-2-KLG conversion rate of about 46 %. This study is an important step in the development of single-bacterial one-step fermentation to produce 2-KLG.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2024.131098DOI Listing

Publication Analysis

Top Keywords

intracellular glucose
8
engineering gluconbacter
4
gluconbacter oxydans
4
oxydans efficient
4
efficient co-utilization
4
glucose
4
co-utilization glucose
4
glucose sorbitol
4
sorbitol one-step
4
one-step biosynthesis
4

Similar Publications

is a dominant member of the human gut microbiome and produces short-chain fatty acids (SCFAs). These promote immune system function and inhibit inflammation, making this microbe important for human health. Lactate is a primary source of gut SCFAs but its utilization by has not been explored.

View Article and Find Full Text PDF

Elevated glucose levels at the fetal-maternal interface are associated with placental trophoblast dysfunction and increased incidence of pregnancy complications. Trophoblast cells predominantly utilize glucose as an energy source, metabolizing it through glycolysis in the cytoplasm and oxidative respiration in the mitochondria to produce ATP. The TGFβ1/SMAD2 signaling pathway and the transcription factors PPARγ, HIF1α, and AMPK are key regulators of cell metabolism and are known to play critical roles in extravillous trophoblast cell differentiation and function.

View Article and Find Full Text PDF

Failure to repair damaged NAD(P)H blocks de novo serine synthesis in human cells.

Cell Mol Biol Lett

January 2025

Enzymology and Metabolism Group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4367, Belvaux, Luxembourg.

Background: Metabolism is error prone. For instance, the reduced forms of the central metabolic cofactors nicotinamide adenine dinucleotide (NADH) and nicotinamide adenine dinucleotide phosphate (NADPH), can be converted into redox-inactive products, NADHX and NADPHX, through enzymatically catalyzed or spontaneous hydration. The metabolite repair enzymes NAXD and NAXE convert these damaged compounds back to the functional NAD(P)H cofactors.

View Article and Find Full Text PDF

Exercise activates autophagy and lysosome system in skeletal muscle, which are known to play an important role in metabolic adaptation. However, the mechanism of exercise-activated autophagy and lysosome system in obese insulin resistance remains covert. In this study, we investigated the role of exercise-induced activation of autophagy and lysosome system in improving glucose metabolism of skeletal muscle.

View Article and Find Full Text PDF

Background: Diabetes is a primary contributor to diabetic cardiomyopathy (DbCM), which is marked by metabolic imbalances such as elevated blood glucose and lipid levels, leading to significant structural and functional alterations in the myocardium. Elevated free fatty acids (FFAs) and hyperglycemia play critical roles in DbCM development, with FFAs inducing insulin resistance in cardiomyocytes and promoting lipid accumulation, resulting in oxidative stress and fibrosis. Current research suggests that glucagon-like peptide-1 (GLP-1) receptor agonists may effectively mitigate DbCM, although an effective treatment for this condition remains elusive, and the precise mechanisms of this protective effect are not fully understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!