In this study, a microbial fuel cell was constructed using Raoultella sp. XY-1 to efficiently degrade tetracycline (TC) and assess the effectiveness of the electrochemical system. The degradation rate reached 83.2 ± 1.8 % during the 7-day period, in which the system contained 30 mg/L TC, and the degradation pathway and intermediates were identified. Low concentrations of TC enhanced anodic biofilm power production, while high concentrations of TC decreased the electrochemical activity of the biofilm, extracellular polymeric substances, and enzymatic activities associated with electron transfer. Introducing electrogenic bacteria improved power generation efficiency. A three-strain hybrid system was fabricated using Castellaniella sp. A3, Castellaniella sp. A5 and Raoultella sp. XY-1, leading to the enhanced TC degradation rate of 90.4 % and the increased maximum output voltage from 200 to 265 mV. This study presents a strategy utilizing tetracycline-degrading bacteria as bioanodes for TC removal, while incorporating electrogenic bacteria to enhance electricity generation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biortech.2024.131096 | DOI Listing |
Bioresour Technol
September 2024
School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, Hunan, PR China; Key Laboratory of Biohydrometallurgy of Ministry of Education, Changsha 410083, Hunan, PR China. Electronic address:
Microorganisms
February 2020
School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China.
As an environmental pollutant, tetracycline (TC) can persist in the soil for years and damage the ecosystem. So far, many methods have been developed to handle the TC contamination. Microbial remediation, which involves the use of microbes to biodegrade the pollutant, is considered cost-efficient and more suitable for practical application in soil.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!